The Structural and Functional Basis of Physiological and Reparative Regeneration of Corneal Tissues
https://doi.org/10.18499/2225-7357-2019-8-2-82-90
Abstract
The article is devoted to the review and analysis of scientific literature on physiological and reparative histogenesis in the cornea. The most vulnerable in injuries of the anterior parts of the eye is the cornea. Therefore, it is extremely important to assess the processes of regeneration of the cornea. There are stem cells in the corneal tissues, but their contribution to its regeneration is different and depends on many internal and external factors. The most prominent role and importance of stem cells in the regeneration of the cornea is manifested in the regeneration of the anterior epithelium. It is constantly updated by mitotic division of corneal phenotype stem cells located in the corneal area of the limb and perilymbal zone. Cells of other layers of the cornea - keratocytes own substance and endothelial cells are rarely divided. Keratocytes are capable of proliferation under the influence of additional factors, and the endothelial repareret by stretching and migration of the endothelial cells intact and at the expense of intracellular regeneration. The main reason for the violation of reparative regeneration of corneal tissue is limbal cell insufficiency syndrome, due to deficiency or dysfunction of stem cells of the limb. The lack of stem cells of any type of tissue can lead to impaired regeneration of the injured cornea as a result of advanced proliferation of myofibroblasts and secretion of the extracellular matrix, which contributes to the formation of connective scar and corneal opacity. Damage to the limbal region significantly disrupts reparative histogenesis in the cornea. Normal epithelialization of the cornea is possible with the preservation of at least half of the area of the limbal region.
About the Authors
N. N. ShevlyukRussian Federation
Nikolai Shevlyuk
Ul. Sovetskaya, 6, Orenburg, 460000
A. V. Radchenko
Russian Federation
A. A. Stadnikov
Russian Federation
References
1. Borzenok SA, Onishchenko NA, Tonaeva HD, Comach JA, Kovshun EV, Strusova NA. Cotransplantation MMSC-like cells of the limb contributes to local immune and transparent engraftment of the transplant of the cornea when keratoplasty is high risk. Vestnik of Transplantology and artificial organs. 2014; 16(1):12-31 (in Russian).
2. Gololobov VG, Gaivorovskii IV, Deev RV, Rud'ko AS, Jellinidi VN, Anikeeva NV, Suhinin MV. Reparative regeneration of multilayered corneal epithelium: biotechnological potential. Cell Transplantology and tissue engineering. 2008; 3(4):55-9 (in Russian).
3. Gundorova RA, Chentsova EV. Cellular technologies in ophthalmology: 10 years of experience in experimental studies and prospects in the clinic. Russian ophthalmological journal. 2008; 1(1):45-9 (in Russian).
4. Zueva LV. Organ of vision. Guide to histology. 2nd edition, corrected. Vol. 1. St. Petersburg: Spetslit. 2011: 755-69 (in Russian).
5. Kadyshev VV, Kadysheva LV. The use of stimulators of corneal regeneration in traumatic injuries. Clinical ophthalmology. 2011; 12(4)453-5 (in Russian).
6. Kanyukov VN, Stadnikov AA, Trubina Om, Yakhina OM. Clinical and morphological aspects of corneal regeneration after chemical burns. Bulletin of the Ural medical academic science. 2014; 5:29-31 (in Russian).
7. Miludin ES. Experimental model of insufficiency regional stem cells of the corneal epithelium. Vestnik SamGU. Natural science series. 2006; 9(49):219-26 (in Russian).
8. Nikolaeva LR, Chentsova EV. Limbic cellular insufficiency. Journal of ophthalmology. 2006; 122(3):4 3-6 (in Russian).
9. Omelyanenko NP, Kovalev AV, Smorchkov MM, Mishina ES. The Structure of the own substance of the cornea of the human eye. Morphology. 2017; 151(3):93 (in Russian).
10. Popandopulo AG, Kavelina AS, Ivanova ON, Drozhzhina GI. The role of limbal cells in the regeneration of the cornea. Tavricheskiy mediko-biologicheskiy vestnik. 2013; i6(6i):158-6o (in Russian).
11. Puchinskaia MV. Epithelial-mesenchymal process in norm and pathology. Archives of pathology. 2015; 77(1):75-83 (in Russian).
12. Radchenko AV, Shevlyuk NN, Kirilichev AI. Morphofunctional characteristic of reparative histogenesis in the cornea of a rabbit with burn injury of the limbal region. Bulletin of the Orenburg state University. 2014; 13(174):85-7 (in Russian).
13. Radchenko VA, Shevlyuk NN, Kirillichev AI. Morphofunctional characteristic of reparative histogenesis of the tissues of the cornea of a rabbit after heat damage to the limbal region. Morphology. 2013; 144(5):108-9 (in Russian).
14. Rapuano KDzh. Cornea: per. s angl. Moscow: GEOTAR-Media, 2010 (in Russian).
15. Simirskiy VN. Regeneration and fibrosis of corneal tissues. Ontogenez. 2014; 45(5):3 14-25 (in Russian).
16. Sukhinin MV, Gololobov VG. Reactive changes in the anterior epithelium of the cornea with damage to the germinal zone of the limb of the eye. Fundamental problems of histology, histogenesis and tissue regeneration. SPb.: VMedA, 2004: 490-495 (in Russian).
17. Frolov AN. Fraxiparina influence on the dynamics of the inflammatory process and the regeneration of the cornea in various diseases of the cornea and limbus. Ophthalmological journal. 2009; 6:54-7 (in Russian).
18. Chernysh VF, Boyko EV. Eye burns -the state of the problem and new approaches. SPb.: VMedA, 2008: 135 (in Russian).
19. Churashov SV, Chernysh VF, Rud'ko AS, Zlobin IA. Features of healing of heavy alkaline burns only corneas, only a limbalny zone, and also their combination in experiment. Ophthalmology. 2012; 4-2(59): 214-7] (in Russian).
20. Shevlyuk NN, Radchenko AV. Morphofunctional transformations in the rabbit cornea in case of burn injury of the limb. Journal of anatomy and histopathology. 2018; 7(1):82-6 (in Russian).
21. Ahmad S, Kolli S, Li D-Q, de Paiva CS, Pryzborski S, Dimmick I, et al. A Putative Role for RHAMM/HMMR as a Negative Marker of Stem Cell-Containing Population of Human Limbal Epithelial Cells. Stem Cells. 2008 Jun;26(6):1609-19. doi: 10.1634Zstemcells.2007-0782
22. Burillon C, Huot L, Justin V, NatafS, Chapuis F, Decullier E, et al. Cultured Autologous Oral Mucosal Epithelial Cell Sheet (CAOMECS) Transplantation for the Treatment of Corneal Limbal Epithelial Stem Cell Deficiency. Investigative Opthalmol-ogy & Visual Science. 2012 Mar 13;53(3):1325-31. doi: 10.1167/iovs.11-7744
23. Chaffer CL, Thompson Ew, Williams ED. Mesenchymal to Epithelial Transition in Development and Disease. Cells Tissues Organs. 2007;185(1-3):7-19. doi: 10.1159/000101298
24. Daniels JT, Dart jK, Tuft SJ, Khaw PT. Corneal stem cells in review. Wound Repair and Regeneration. 2001 Nov;9(6):483-94. doi: 10.1046Zj.1524-475x.2001.00483.x
25. Davanger M, Evensen A. Role of the Pericorneal Papillary Structure in Renewal of Corneal Epithelium. Nature. 1971 Feb;229(5286):560-1. doi: 10.1038/229560a0
26. Daya SM, Watson A, Sharpe JR, Giledi O, Rowe A, Martin R, et al. Outcomes and DNA analysis of ex vivo expanded stem cell allograft for ocular surface reconstruction. Ophthalmology. 2005 Mar;112(3):470-7. doi: 10.1016/j.ophtha.2004.09.023
27. DelMonte DW, Kim T. Anatomy and physiology of the cornea. Journal of Cataract & Refractive Surgery. 2011 Mar;37(3):588-98. doi: 10.1016Zj.jcrs.2010.12.037
28. Dua hS, Gomes JA., King AJ, Maharajan VS. The amniotic membrane in ophthalmology. Survey of Ophthalmology. 2004 Jan;49(1):51-77. doi: 10.1016/j.survophthal.2003.10.004
29. Dua HS, Joseph A, Shanmuganathan VA, Jones RE. Stem cell differentiation and the effects of deficiency. Eye. 2003 Nov;17(8):877-85. doi: 10.1038/sj.eye.6700573
30. Dua HS, Azuara-Blanco A. Allo-limbal transplantation in patients with limbal stem cell deficiency. British Journal of Ophthalmology. 1999 Apr 1;8з(4):414-9. doi: 10.1136/bjo.834414
31. Gupta N, Kalaivani M, Tandon R. Comparison of prognostic value of Roper Hall and Dua classification systems in acute ocular burns. British Journal of Ophthalmology. 2010 Aug зо;95(2):194-8. doi: 10.1136/bjo.2009.173724
32. Hay ED. Theory for epithelial-mesenchymal transformation based on the fixed cortex cell motility model. Cell Motility and the Cytoskeleton. 198944(4)455-7. doi: I0.i002/cm.970i40403
33. He Z, Campolmi N, Gain P, Ha Thi BM, Dumol-lard J-M, Duband S, et al. Revisited Microanatomy of the Corneal Endothelial Periphery: New Evidence for Continuous Centripetal Migration of Endothelial Cells in Humans. STEM CELLS. 2012 Oct 2240(11^2523-34. doi: I0.i002/stem.i2i2
34. Joyce NC. Proliferative capacity of corneal endothelial cells. Experimental Eye Research. 2012 Feb;95(i):i6-23. doi: I0.i0i6/j.exer.20ii.08.0i4
35. Keivyon KR, Tseng SCG. Limbal Autograft Transplantation for Ocular Surface Disorders. Ophthalmology. 1989 May;96(5):709-23. doi: 10.1016/s0161-6420(89)32833-8
36. Klymkowsky MW, Savagner P. Epithelial-Mesenchymal Transition. The American Journal of Pathology. 2009 May;174(5):1588-93. doi: 10.2353/ajpath.2009.080545
37. Kolli S, Ahmad S, Mudhar HS, Meeny A, Lako M, Figueiredo FC. Successful Application of Ex Vivo Expanded Human Autologous Oral Mucosal Epithelium for the Treatment of Total Bilateral Lim-bal Stem Cell Deficiency. STEM CELLS. 2014 Jul 15;32(8):2135-4б. doi: I0.i002/stem.i694
38. Li W, Hayashida Y, Chen Y-T, Tseng SC. Niche regulation of corneal epithelial stem cells at the limbus. Cell Research. 2007 Jan;17(1):26-36. doi: I0.i038/sj.cr.73i0i37
39. Li C, Yin T, Dong N, Dong F, Fang X, Qu Y-L, et al. Oxygen tension affects terminal differentiation of corneal limbal epithelial cells. Journal of Cellular Physiology. 2011 Jun 9426(9^2429-37. doi: 10.1002/jcp.22591
40. Majo F, Rochat A, Nicolas M, Jaoude GA, Bar-randon Y. Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature. 2008 Oct 1;456(7219):250-4. doi: 10.1038/nature07406
41. Pellegrini G, Golisano O, Paterna P, Lambiase A, Bonini S, Rama P, et al. Location and Clonal Analysis of Stem Cells and Their Differentiated Progeny in the Human Ocular Surface. The Journal of Cell Biology. 1999 May 17445(4)469-82. doi: 10.1083/jcb.145.4.769
42. Pfister RR. Corneal stem cells disease: concepts, categorization and treatment by auto- and homotransplantations of limbal stem cells. CLAO J. 1994; 20(1):64-72.
43. Piatigorsky J. Enigma of the Abundant Water-Soluble Cytoplasmic Proteins of the Cornea. Cornea. 2001 Nov;20(8):853-8. doi: 10.1097/00003226-200111000-00015
44. Puangsricharern V, Tseng SCG. Cytologlogic Evidence of Corneal Diseases with Limbal Stem Cell Deficiency. Ophthalmology. 1995 Oct;102(10):1476-85. doi: 10.1016/s0161-6420(95)30842-1
45. Rama P, Bonini S, Lambiase A, Golisano O, Pa-terna P, De Luca M, et al. Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency1. Transplantation. 2001 Nov;72(9):1478-85. doi: 10.1097/00007890-200111150-00002
46. Ramirez BE, Victoria DA, Murillo GM, Herreras JM, Calonge M. In vivo confocal microscopy assessment of the corneoscleral limbal stem cell niche before and after biopsy for cultivated limbal epithelial transplantation to restore corneal epithelium. Histopathol. 2014; 30(2)45-51. doi: 10.14670/HH-30.183. Epub 2014 Jul 30
47. Saika S, Yamanaka O, Sumioka T, Miyamoto T, Miyazaki K, Okada Y, et al. Fibrotic disorders in the eye: Targets of gene therapy. Progress in Retinal and Eye Research. 2008 Mar;27(2):177-96. doi: 10.1016/j.preteyeres.2007.12.002
48. Schermer A. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. The Journal of Cell Biology. 1986 Jul 1403(1)49-62. doi: 10.1083/jcb.103.1.49
49. Schlotzer-Schrehardt U, Kruse FE. Identification and characterization of limbal stem cells. Experimental Eye Research. 2005 Sep;81(3):247-64. doi: 10.1016/j.exer.2005.02.016
50. Shortt AJ, Secker GA, Munro PM, Khaw PT, Tuft SJ, Daniels JT. Characterization of the Limbal Epithelial Stem Cell Niche: Novel Imaging Techniques Permit In Vivo Observation and Targeted Biopsy of Limbal Epithelial Stem Cells. Stem Cells. 2007 Jun;25(6):1402-9. doi: 10.1634/stemcells.2006-0580
51. Stoiber J, Muss WH, Pohla-Gubo G, Ruckhofer J, Grabner G. Histopathology of Human Corneas After Amniotic Membrane and Limbal Stem Cell Transplantation for Severe Chemical Burn. Cornea. 2002 Jul;21(5):482-9. doi: 10.1097/00003226-200207000-00009
52. Thomas PB, Liu Y-H, Zhuang FF, et al. Identification of Notch-1 expression in the limbal basal epithelium. Mol. Vis. Sci. 2007; 1(13): 337-44.
53. Trounson A, McDonald C. Stem Cell Therapies in Clinical Trials: Progress and Challenges. Cell Stem Cell. 2015 Jul;17(1):11-22. doi: 10.1016/j.stem.2015.06.007
54. Tsai rJ-F, Li L-M, Chen J-K. Reconstruction of Damaged Corneas by Transplantation of Autologous Limbal Epithelial Cells. New England Journal of Medicine. 2000 Jul 13;343(2):86-93. doi: 10.1056/nejm200007133430202
55. Tseng SCG. Regulation and clinical implications of corneal epithelial stem cells. Molecular Biology Reports. 199643(1)47-58. doi:10.1007/bf00357072
56. Tseng SCG, Kruse FE, Merritt J, Li D-Q. Comparison between serum-free and fibroblast-cocultured single-cell clonal culture systems: Evidence showing that epithelial anti-apoptotic activity is present in 3T3 fibroblast-conditioned media. Current Eye Research. 1996 Jan;15(9):973-84. doi: 10.3109/02713689609017643
57. Tseng SCG, Liang L, Sheha H. Liand limbal stem cell transplantation: new progresses and challenges. Eye. 2008; 1(8)44-8.
58. Wagoner MD. Chemical injuries of the eye: Current concepts in pathophysiology and therapy. Survey of Ophthalmology. 1997 Jan;41(4):275-313. doi: 10.1016/s0039-6257(96)00007-0
59. Wilson SE. Corneal myofibroblast biology and pathobiology: Generation, persistence, and transparency. Experimental Eye Research. 2012 Jun;99:78-88. doi: 10.1016Zj.exer.2012.03.018
60. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nature Medicine. 2012 Jul;18(7):1028-40. doi: 10.1038Znm.2807
61. Zeisberg M, Kalluri R. Cellular Mechanisms of Tissue Fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. American Journal of Physiology-Cell Physiology. 2013 Feb;304(3):216-25. doi: 10.1152/ajpcell.00328.2012
Review
For citations:
Shevlyuk N.N., Radchenko A.V., Stadnikov A.A. The Structural and Functional Basis of Physiological and Reparative Regeneration of Corneal Tissues. Journal of Anatomy and Histopathology. 2019;8(2):82-90. (In Russ.) https://doi.org/10.18499/2225-7357-2019-8-2-82-90