Regeneration of Deep Linear Wounds of Rats’ Skin by Local Exposure to Metabolites of a Bacillus Subtilis 804 Culture
https://doi.org/10.18499/2225-7357-2019-8-2-55-59
Abstract
The aim of the research was to study of the effect of metabolites of the culture of Bacillus subtilis 804 on the healing processes of deep linear wounds of rats' skin.
Material and methods. The study was performed on 40 Wistar rats, which were made linear skin wounds 1.0 cm in length and depth to the hypodermis under the inhalation ether anesthesia. The animals were divided into 2 groups (20 rats in each). In the 1st experimental group, the area of the skin wound defect was once watered with 1.0 ml of a sterile solution of the Bacillus subtilis 804 metabolites. In the 2nd control group 1.0 ml of saline was applied to the wound. Tissues from the area of the wound defect were studied using light microscopy, histochemistry, and morphometry on days 3, 7, and 11.
Results. In the experiment, an earlier migration of macrophages into the damage zone and a higher value of macrophage-neutrophil index were observed, which indicated the initially less pronounced inflammatory process, faster wound cleansing and the transition to the next stages of healing with accelerated proliferation and differentiation of epithelial cells and fibroblasts with the replacement of type III collagen by type I.
Conclusions. The metabolites of Bacillus subtilis 804 optimize the function of effector cells of the reparative process, that limits the severity of inflammation and determines the early migration of macrophages to the damaged area, accelerated cleansing of the wound defect, stimulates the migration of fibroblasts and epithelial cells into the wound, contributes to the formation of a functional and morphologically complete epidermal layer on the 7th day, and the dermal component on the 11th day after the alteration, leads to the limitation of sclerosis during remodeling of the forming scar, ensuring its normotrophicity.
About the Authors
V. A. MikhanovRussian Federation
Vasilii Mikhanov
Ul. Sovetskaya, 6Orenburg, 460000
V. S. Polyakova
Russian Federation
R. A. Abzemeleva
Russian Federation
E. I. Shurygina
Russian Federation
A. V. Kuramysov
Russian Federation
References
1. Alekseeva NT, Klochkova SV, Nikityuk DB, Glukhov AA. Regeneratsiya kozhi: aktual'nye metody vozdeystviya. Voronezh: Nauchnaya kniga; 2015. 300 (in Russian).
2. Anichkov NN, Volkov KG. Morfologiya zazhivleniya ran. Moscow: Medgiz; 1951.123 (in Russian).
3. Goncharova VP. Faktory rosta fibroblastov. Fiziologicheskii zhurnal im. I.M. Sechenova. 1994; 80(9):163 (in Russian).
4. Kalmykova NV, Andreev-Andrievskiy AA, Dem'yanenko IA, Manskikh VN, Lagereva EA, Popova AS, et al. The stimulating effect of various forms of collagenic wound coverings on the epithelization process of skin wounds. Biomedicine. 2017; 4:85-96 (in Russian).
5. Nikitenko VI. Patent RU № 2427644; 2010.
6. Ольшницкая О.В., Масычева В.И., Кравченко И.В., Нургожин Т.С., Русак Ю.Э., Гуляев А.Е. Использование субстанции фактора некроза опухоли-альфа с целью коррекции процессов заживления ран (обзор литературы). Вестник новых медицинских технологий. 2014; 21(3):180-4
7. Shekhter AB, Berchenko GI. Granulyatsionnaya tkan': vospalenie i regeneratsiya. Arkhiv patologii. 1978; XL(8):20-8 (in Russian).
8. Akita S, Akino K, Hirano A. Basic Fibroblast Growth Factor in Scarless Wound Healing. Advances in Wound Care. 2013 Mar;2(2):44-9. doi: 10.1089/wound.2011.0324
9. Akita S, Akino K, Imaizumi T, Hirano A. Basic fibroblast growth factor accelerates and improves second-degree burn wound healing. Wound Repair and Regeneration. 2008 Sep;16(5):635-41. doi: 10.1111/j.1524-475x.2008.00414.x
10. Cheng W, Yan-hua R, Fang-gang N, Guo-an Z. The content and ratio of type I and III collagen in skin differ with age and injury. African J Biotech-nol. 2011; 10 (13): 2524-9.
11. Goertz O, von der Lohe L, Lauer H, Khosrawipour T, Ring A, Daigeler A, et al. Repetitive extracorporeal shock wave applications are superior in inducing angiogenesis after full thickness burn compared to single application. Burns. 2014 Nov;40(7):1365-74. doi: 10.1016/j.burns.2014.01.019
12. Guo S, DiPietro LA. Factors Affecting Wound Healing. Journal of Dental Research. 2010 Feb 5;89(3):219-29. doi: 10.1177/0022034509359125
13. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA. Vascular Endothelial Growth Factor and Angiogenesis. Pharmacological Reviews. 2004 Dec 1;56(4):549-80. doi: 10.1124/pr.56.4.3
14. Kobayashi F, Matsuzaka K, Inoue T. The effect of basic fibroblast growth factor on regeneration in a surgical wound model of rat submandibular glands. International Journal of Oral Science. 2015 Nov 20;8(1):16-23. doi: 10.1038/ijos.2015.36
15. Leiros GJ, Kusinsky AG, Drago H, Bossi S, Sturla F, Castellanos ML, et al. Dermal Papilla Cells Improve the Wound Healing Process and Generate Hair Bud-Like Structures in Grafted Skin Substitutes Using Hair Follicle Stem Cells. STEM CELLS Translational Medicine. 2014 Aug 26;3(10):1209-19. doi: 10.5966/sctm.2013-0217
16. Lyons SM, Fay MM, Akiyama Y, Anderson PJ, Ivanov P. RNA biology of angiogenin: Current state and perspectives. RNA Biology. 2016 Dec 23;14(2):171-8. doi: 10.1080/15476286.2016.1272746
17. Pastushenko I, Vermeulen PB, Van den Eynden GG, Rutten A, Carapeto FJ, Dirix LY, et al. Mechanisms of tumour vascularization in cutaneous malignant melanoma: clinical implications. British Journal of Dermatology. 2014 Jul 26;171(2):220-33. doi: 10.1111/bjd.12973
18. Pavlov N, Frendo J-L, Guibourdenche J, Degrelle SA, Evain-Brion D, Badet J. Angiogenin Expression during Early Human Placental Development; Association with Blood Vessel Formation. BioMed Research International. 2014; 2014:1-17. doi: 10.1155/2014/781632
19. Staton CA, Valluru M, Hoh L, Reed MWR, Brown NJ. Angiopoietin-1, angiopoietin-2 and Tie-2 receptor expression in human dermal wound repair and scarring. British Journal of Dermatology. 2010 Jul 13;163(5):920-7. doi: 10.1111/j.1365-2133.2010.09940.x
20. Zhang X, Kang X, Ji L, Bai J, Liu W, Wang Z. Stimulation of wound healing using bioinspired hydrogels with basic fibroblast growth factor (bFGF). International Journal of Nanomedicine. 2018 Jul;13:3897-906. doi: 10.2147/ijn.s168998
Review
For citations:
Mikhanov V.A., Polyakova V.S., Abzemeleva R.A., Shurygina E.I., Kuramysov A.V. Regeneration of Deep Linear Wounds of Rats’ Skin by Local Exposure to Metabolites of a Bacillus Subtilis 804 Culture. Journal of Anatomy and Histopathology. 2019;8(2):55-59. (In Russ.) https://doi.org/10.18499/2225-7357-2019-8-2-55-59