Preview

Journal of Anatomy and Histopathology

Advanced search

Neuroglial Complex of the Prefrontal Cortex in Men and Women of the Senile Age

https://doi.org/10.18499/2225-7357-2019-8-2-9-14

Abstract

The aim of study was to investigate the neuroglial complex of the prefrontal cortex BA10 area in men and women of the senile age in comparison with the similar parameters in the elderly people.

Material and methods. The study of the neuroglial complex was carried out on a series of frontal total sections of 5 male and 5 female brains in people of the senile age. Totally 20 male and female brain hemispheres were studied. The material was obtained no later than 24 hours after death and was fixed in 10% formalin solution. 20-micron-thick samples were stained with cresyl violet using Nissl method. The density of neurons, total glia, satellite gliocytes and neurons surrounded by them were investigated. Statistical data processing was performed in STATISTICA 12.

Results. The study revealed gender age-related differences of the neuroglial complex morphometric parameters of the prefrontal cortex BA10 area in men and women. The decrease in the density of neurons, the proportion of satellite glia, the increase in the density of total glia were more significantly expressed in senile men than in senile women. These changes were more pronounced in the left hemisphere of the male brain and equally pronounced in both hemispheres in the female brain.

Conclusion. Thus, this study detected features of the neuroglial complex of the prefrontal cortex BA10 area in men and women of the senile age. There was revealed the more significant decrease in the density of pyramidal neurons and satellite gliocytes in the cytoarchitectonic layer III of the prefrontal cortex BA10 area of the male brain compared with the similar layer of the female brain.

About the Authors

I. N. Bogolepova
Research Center of Neurology
Russian Federation

Irina Bogolepova

Per. Obukha, 5, Moscow, 105064



L. I. Malofeeva
Research Center of Neurology
Russian Federation

Moscow



P. A. Agapov
Research Center of Neurology
Russian Federation

Moscow



References

1. Agapov PA, Bogolepova IN, Malofeeva LI. Changing the size of neurons and the density of neurons and glays of area 7 of the women's brain crease in the aging process. International journal of applied and fundamental research. 2017; 5-2:274-80 (in Russian).

2. Bogolepova IN. Morfologicheskie osobennosti individual'nogo stroeniya mozga cheloveka. Zhurnal nevropatologii i psikhiatrii im. S.S. Korsakova. 1982; 82(7):972 (in Russian).

3. Bogolepova I.N. Neiroglial'nye vzaimootnosheniya kak odin iz pokazatelei individual'noi variabel'nosti mozga cheloveka. Morfologiia. 1993; 105(7-8):21-2 (in Russian).

4. Bogolepova IN. Structure and development of the human hippocampus in prenatal ontogenesis. Neuroscience Translations. 1970; 4(4): 56-62 (in Russian).

5. Bogolepova IN. Tsitoarkhitektonicheskie kriterii individual'noi variabel'nosti mozga cheloveka. Morfologiia. 2000; 117(3): 2] (in Russian).

6. Bogolepova IN, Malofeeva LI. Basic Principles of Structural Asymmetry of Cortex Formations in the Human Brain. 2004; 35(3):3-19 (in Russian).

7. Goryaynov SA, Protsky SV, Okhotin VE, Pavlova GV, Revischin AV, Potapov AA. About astroglia in the brain and pathology. Annaly klinicheskoy i eksperimental’noy nevrologii. 2013; 7(7):45-52 (in Russian).

8. Mytsik AV, Stepanov SS, Larionov PM, Akulinin Va. Actual Problems in the Study of Structural and Functional State of Neurons in the Human Cerebral Cortex in Postischemic Period. Journal of anatomy and histopathology. 2012; 1(1):37-47] (in Russian).

9. Salmina AB, Okuneva SO, Taranushenko TE, Fursov AA, Prokopenko SV, Mikhutkina SV, Malinovskaya NA, Tagaeva GA. Neuron-astroglial interactions in dysregulation of energy metabolism in perinatal ischemic brain damage. Annaly klinicheskoy i eksperimental’noy nevrologii. 2008; 2 (3):44-51 (in Russian).

10. Tsitoarkhitektonika kory bol'shogo mozga cheloveka. Pod red. Sarkisova S.A., Filimonova I.N., Preobrazhenskoi N.S. Moscow; 1949: 449 (in Russian).

11. Alexander WH, Vassena E, Deraeve J, Langford ZD. Integrative Modeling of Prefrontal Cortex. Journal of Cognitive Neuroscience. 2017 Oct;29(10):1674-83. doi:10.1162/jocn_a_01138

12. Bilkei-Gorzo A, Albayram O, Ativie F, Chasan S, Zimmer T, Bach K, et al. Cannabinoid 1 receptor signaling on GABAergic neurons influences astrocytes in the ageing brain. Biagini G, editor. PLOS ONE. 2018 Aug i6;i3(8):e0202566. doi:io.i37i/journal.pone.0202566

13. Braver TS, Bongiolatti SR. The Role of Frontopolar Cortex in Subgoal Processing during Working Memory. NeuroImage. 2002 Mar;i5(3):523—36. doi: I0.i006/nimg.200i.i0i9

14. Cerbai F, Lana D, Nosi D, Petkova-Kirova P, Zecchi S, Brothers HM, et al. The Neuron-Astrocyte-Microglia Triad in Normal Brain Ageing and in a Model of Neuroinflammation in the Rat Hippocampus. Norris CM, editor. PLoS ONE. 2012 Sep i8;7(9):e45250. doi: 10.1371/journal.pone.0045250

15. Fabricius K, Jacobsen JS, Pakkenberg B. Effect of age on neocortical brain cells in 90+ year old human females—a cell counting study. Neurobiology of Aging. 2013 Jan;34(1):91-9. doi: 10.1016/j.neurobiolaging.2012.06.009

16. Fields Rd. The Other Half of the Brain. Scientific American. 2004 Apr;290(4):54-61. doi: 10.1038/scientificamerican0404-54

17. Gilman JP, Medalla M, Luebke JI. Area-specific features of pyramidal neurons - a comparative study in mouse and rhesus monkey. Cereb. Cortex. 2017 Mar 1;27(з):2078-94. doi: 10.1093/cercor/bhw062

18. Harry GJ. Microglia during development and aging. Pharmacology & Therapeutics. 2013 Sep;139(3):313-26. doi:10.1016/j.pharmthera.2013.04.013

19. Hayakawa N, Kato H, Araki T. Age-related changes of astorocytes, oligodendrocytes and microglia in the mouse hippocampal CA1 sector. Mechanisms of Ageing and Development. 2007 Apr;128(4):311-6. doi: 10.1016/j.mad.2007.01.005

20. Hwang IK, Yoo K-Y, Kim DS, Kang T-C, Lee B-H, Kim Y-S, et al. Chronological Distribution of Rip Immunoreactivity in the Gerbil Hippocampus During Normal Aging. Neurochemical Research. 2006 Aug 22;31(9):1119-25. doi: 10.1007/s11064-006-9129-4

21. Koechlin E, Hyafil A. Anterior Prefrontal Function and the Limits of Human Decision-Making. Science. 2007 Oct 26;318(5850):594-8. doi: 10.1126/science.1142995

22. Luria AR. Neuropsychology and its importance for medical and for behavioral sciences. Revista del Hospital Psiquiatrico de la Habana. 1973; 14(3): 437-447.

23. Mavroudis IA, Manani MG, Petrides F, Dados D, Ciobica A, Padurariu M, et al. Original article Age-related dendritic and spinal alterations of pyramidal cells of the human visual cortex. Folia Neuropathologica. 2015;53(2):100-10. doi: 10.5114/fn.2015.52406

24. Molofsky AV, Kelley KW, Tsai H-H, Redmond SA, Chang SM, Madireddy L, et al. Astrocyte-encoded positional cues maintain sensorimotor circuit integrity. Nature. 2014 Apr 28;509(7499):189-94. doi: 10.1038/nature13161

25. Oliveira-Pinto AV, Andrade-Moraes CH, Oliveira LM, Parente-Bruno DR, Santos RM, Coutinho RA, et al. Do age and sex impact on the absolute cell numbers of human brain regions? Brain Structure and Function. 2015 Sep 28;221(7):3547-59. doi: 10.1007/s00429-015-1118-4

26. Pelvig Dp, Pakkenberg H, Stark AK, Pakkenberg B. Neocortical glial cell numbers in human brains. Neurobiology of Aging. 2008 Nov;29(11):1754-62. doi: 10.1016/j.neurobiolaging.2007.04.013

27. Peters A, Kemper T. A review of the structural alterations in the cerebral hemispheres of the aging rhesus monkey. Neurobiology of Aging. 2012 Oct;33(10):2357-72. doi:10.1016/j.neurobiolaging.2011.11.015

28. Salminen A, Ojala J, Kaarniranta K, Haapasalo A, Hiltunen M, Soininen H. Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. European Journal of Neuroscience. 2011 Jun 7;34(1):3-11. doi:10.1111/j.1460-9568.2011.07738.x

29. Shallice T, Cipolotti L. The Prefrontal Cortex and Neurological Impairments of Active Thought. Annual Review of Psychology. 2018 Jan 4;69(1):157-80. doi:10.1146/annurev-psych-010416-044123

30. Shimeda Y, Hirotani Y, Akimoto Y, Shindou K, Ijiri Y, Nishihori T, et al. Protective Effects of Capsaicin against Cisplatin-Induced Nephrotoxicity in Rats. Biological & Pharmaceutical Bulletin. 2005;28(9):1635-8. doi:10.1248/bpb.28.1635

31. Watanabe M. Emotional and Motivational Functions of the Prefrontal Cortex. Brain Nerve. 2016; 68(11):1291-9. doi:10.11477/mf.1416200593

32. Yang Y, Raine A. Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: A metaanalysis. Psychiatry Research: Neuroimaging. 2009 Nov;174(2):81-8. doi:10.1016/j.pscychresns.2009.03.012


Review

For citations:


Bogolepova I.N., Malofeeva L.I., Agapov P.A. Neuroglial Complex of the Prefrontal Cortex in Men and Women of the Senile Age. Journal of Anatomy and Histopathology. 2019;8(2):9-14. (In Russ.) https://doi.org/10.18499/2225-7357-2019-8-2-9-14

Views: 903


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2225-7357 (Print)