Preview

Journal of Anatomy and Histopathology

Advanced search

THE PARTICIPATION OF MAST CELLS IN ADAPTATION OF THE STOMACH OF MONGOLIAN GERBILS TO THE GRAVITATIONAL FACTOR

https://doi.org/10.18499/2225-7357-2018-7-1-14-26

Abstract

The aim was to study the morphofunctional state of the mast cells (MC) population in the stomach of Mongolian gerbils after a 12-day space flight.

Material and methods. The experiment was performed on 35 Mongolian gerbils, 12 of which were in the 12-day space flight onboard the “Foton-M” No. 3 spacecraft, 11 animals made up a group of synchronous experiments, simulating some conditions of orbital flight, 12 – a vivarium group. The object of the study – the MC of the stomach fundus. Histochemical (revealing the chloroacetyl esterase activity, staining with toluidine blue) and immunomorphological (identification of tryptase, MC chymase and growth factor of MC and stem cells receptor – CD117) staining techniques were used.

Results. A decrease in the volume of the gastric MC population was observed, which was combined with a change in the secretion and expression of the growth factor receptor of mast cells and stem cells after orbital flight. The increase in the number of chloroacetyl esterase-positive MC, in the intensity of migration of mature MC precursors in the gastric membrane was found. The decrease in tryptase-containing MC in the population, indicating the active secretion of protease under the influence of real space flight factors, was accompanied by an increase of chymase expression. The results of the synchronous experiment on modeling the orbital flight conditions in the model of ground equipment were not characterized by such pronounced changes.

Conclusions. MC are a multifunctional element of the stomach anti-gravity system and a promising target for the study of adaptive processes in tissue microenvironment in zero gravity. MC take an active part in the formation of gravisensitivity of the stomach tissue structures of Mongolian gerbils and determine the development of adaptive processes under the influence of weightlessness at the local and systemic levels.

About the Authors

D. A. Atyakshin
Voronezh N. N. Burdenko State Medical University
Russian Federation


D. B. Nikityuk
The Federal Research Centre of Biotechnology and Food Safety; Lomonosov Moscow State University
Russian Federation


S. V. Klochkova
First I.M. Sechenov Moscow State Medical University (Sechenov University); Lomonosov Moscow State University
Russian Federation


N. T. Alexeeva
Voronezh N. N. Burdenko State Medical University
Russian Federation


A. S. Burtseva
Voronezh N. N. Burdenko State Medical University
Russian Federation


References

1. Avtsyn A.P., Fuks B.B. Printsipy i metody gistotsitokhimicheskogo analiza v patologii [Principles and methods of histocytochemical analysis in pathology]. Leningrad: Meditsina; 1971: 364(in Russian).

2. Atiakshin D.A., Burtseva A.S., Alekseeva N.T. Triptaza kak polifunktsional'nyy komponent sekretoma tuchnykh kletok [Tryptase as a Multifunctional Component of Mast Cells' Secretome]. Journal of Anatomy and Histopathology. 2017; 6(1): 121–132(in Russian).

3. Atiakshin D.A., Bykov E.G. Morfologicheskie izmeneniya stenki zheludka mongol'skikh peschanok posle 12-sutochnogo orbital'nogo poleta na kosmicheskom apparate "FOTON-M3" [Morphological changes in gastric wall of mongolian gerbils following the 12-day orbital flight aboard FOTON-M3]. Aviakosmicheskaya i ekologicheskaya meditsina. 2012; 46(5): 26–33(in Russian).

4. Atiakshin D.A., Bykov E.G., Ilyin E.A., Pashkov A.N. Sostoyanie interstitsiya toshchey kishki mongol'skikh peschanok posle poleta na kosmicheskom apparate "FOTON-M3" [Jejinum intersticium in mongolian gerbils after the flight on spacecraft FOTOM-М3]. Aviakosmicheskaya i ekologicheskaya meditsina. 2012; 46(3): 8–13(in Russian).

5. Afonin B.V. Gemodinamicheskiy mekhanizm, opredelyayushchiy vozniknovenie gipersekretornogo sostoyaniya zheludka v usloviyakh mikrogravitatsii [Hemodynamic mechanism determining the occurrence hypersecreting stomach condition in microgravity]. Aviakosmicheskaya i ekologicheskaya meditsina. 2013; 47(4): 10–11(in Russian).

6. Afonin B.V., Sedova E.A. Sostoyanie pishchevaritel'noy sistemy cheloveka pri modelirovanii effektov nevesomosti v usloviyakh immersii [Digestive system functioning during simulation of the microgravtty effects on humans by immersion]. Aviakosmicheskaya i ekologicheskaya meditsina. 2009: 43(1): 48–52(in Russian).

7. Buravkova L.B. Problemy gravitatsionnoy fiziologii kletki [Problems of gravitational physiology of cell]. Aviakosmicheskaya i ekologicheskaya meditsina. 2008; 42(6): 10–18(in Russian).

8. Bykov E.G. Populyatsionnye kharakteristiki tkanevykh bazofilov [The Population Characteristics of Mast Cells]. VIII Vserossiyskaya konferentsiya po patologii kletki: sbornik trudov [VIII Russian conference on pathology of the cell: proceedings of the conference]. Moscow; 2010: 45–47 (in Russian)(in Russian).

9. Gurieva T.S.,Dadasheva O.A.,Mednikova E.I.,et al. Gistogenez vnutrennikh organov embrionov yaponskogo perepela, razvivshikhsya v usloviyakh nevesomosti [Histogeny of the visceral organs of embryonic japanese quails developed in the microg environment]. Aviakosmicheskaya i ekologicheskaya meditsina. 2009; 43(6): 8–13(in Russian).

10. IIyin Eu.A., Smirnov I.A., Soldatov P.E., Orlov O.I. Eksperiment s mongol'skimi peschankami v polete kosmicheskogo apparata «Foton-M3» [Gerbil experiment in the flight of spacecraft "FOTON-M3"]. Aviakosmicheskaya i ekologicheskaya meditsina. 2009; 43(4): 21–25(in Russian).

11. Omelyanenko N.P., Slutsky L.I. Soedinitel'naya tkan' (gistofiziologiya i biokhimiya) [Connective tissue. Histophysiology and biochemistry]. Ed by S.P.Mironova. M.: Izvestiya; 2009: 380.

12. Smirnov K. V., Ugolev A. M. Pishchevarenie i vsasyvanie. Chelovek v kosmicheskom polete. Kosmicheskaya biologiya i meditsina[Digestion and absorption. Human in spaceflight. Space biology and medicine]. ed. By Antipov V.V., Grigor'ev A.I., Khantun K.L. Moscow: Nauka; 1997. 3(1): 357– 401 (in Russian).

13. Atiakshin D., Samoilova V., Buchwalow I., Boecker W., Tiemann M. Characterization of mast cell populations using different methods for their identification. Histochemistry and Cell Biology. 2017; 147(6): 683–694.

14. Caughey G. H. Mast cell proteases as pharmacological targets. Eur. J. Pharmacol. 2016; 778: 44– 55.

15. Caughey G. H. Mast cell tryptases and chymases in inflammation and host defense. Immunol. Rev. 2007; 217: 141–154.

16. Dell'Italia L. J., Collawn J. F., Ferrario C. M. Multifunctional Role of Chymase in Acute and Chronic Tissue Injury and Remodeling. Circ Res. 2018; 122(2):319–336.

17. Douaiher J., Succar J., Lancerotto L. et al. Development of Mast Cells and Importance of Their Tryptase and Chymase Serine Proteases in Inflammation and Wound Healing. Adv. Immunol. 2014; 122: P.211–252.

18. Enerbäck L. Mucosal mast cells in the rat and in man. Int. Arch. Allergy Appl. Immunol. 1987; 82(3–4): 249–255.

19. Goldstein S. M., Leong J., Schwartz L. B., Cooke D. Protease composition of exocytosed human skin mast cell protease-proteoglycan complexes. Tryptase resides in a complex distinct from chymase and carboxypeptidase. The Journal of immunology: official journal of the American Association of Immunologists. 1992; 148(8): 2475–2482.

20. Gruber B. L., Marchese M. J., Suzuki K. et al. Synovial procollagenase activation by human mast cell tryptase dependence upon matrix metalloproteinase 3 activation. The Journal of clinical investigation. 1989; 84(5): 1657–1662.

21. Hallgren J., Pejler G. Biology of mast cell tryptase. An inflammatory mediator. Federation of European Biochemical Societies journal. 2006. 273(9): 1871–1895.

22. Harm D. L. Changes in gastric myoelectric activity during space flight. Digestive diseases and sciences. 2002; 47(8): 1737–1745.

23. Immunohistochemistry: Basics and Methods, 1st Edition. ed. I.B. Buchwalow, W. Boecker. London: New York: Springer; 2010; 158.

24. Jarido V., Kennedy L., Hargrove L. et al. The emerging role of mast cells in liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2017; 313(2): 89–101.

25. Lees M., Taylor D. J., Woolley D. E., Lees M. Mast cell proteinases activate precursor forms of collagenase and stromelysin, but not of gelatinases A and B. European journal of biochemistry. 1994; 223(1): 171–177.

26. Lojda Z. Enzyme Histochemistry. A Laboratory Manual. Berlin; Heidelberg; New York: Springer, 1976: 300.

27. Olivera A., Beaven M. A., Metcalfe D. D. Mast cells signal their importance in health and disease. J Allergy Clin Immunol. 2018; S0091-6749(18)302252. doi: 10.1016/j.jaci.2018.01.034.

28. Saarinen J., Kalkkinen N., Welgus H. G., Kovanen P. T. Activation of human interstitial procollagenase through direct cleavage of the Leu83-Thr84 bond by mast cell chymase. J. Biol. Chem. 1994; 269: 18134–18140.

29. Sridharan G., Shankar A. A. Toluidine blue: A review of its chemistry and clinical utility. Journal of Oral and Maxillofacial Pathology. 2012; 16(2): 251–255.

30. Vukman K. V., Försönits A., Oszvald Á. et al. Mast cell secretome: Soluble and vesicular components. Semin. Cell Dev. Biol. 2017; 67: 65–73.doi: 10.1016/j.semcdb.2017.02.002.

31. Welle M. Development, significance, and heterogeneity of mast cells with particular regard to the mast cell-specific proteases chymase and tryptase. J. Leukoc. Biol. 1997; 61(3): 233–245.

32. Wernersson S., Pejler G. Mast cell secretory granules: armed for battle. Nat Rev Immunol. 2014; 147: 478–494.


Review

For citations:


Atyakshin D.A., Nikityuk D.B., Klochkova S.V., Alexeeva N.T., Burtseva A.S. THE PARTICIPATION OF MAST CELLS IN ADAPTATION OF THE STOMACH OF MONGOLIAN GERBILS TO THE GRAVITATIONAL FACTOR. Journal of Anatomy and Histopathology. 2018;7(1):14-26. (In Russ.) https://doi.org/10.18499/2225-7357-2018-7-1-14-26

Views: 583


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2225-7357 (Print)