Preview

Журнал анатомии и гистопатологии

Расширенный поиск

Роль нарушения клеточно-матриксных взаимодействий в патогенезе прогрессирования фиброза легких

https://doi.org/10.18499/2225-7357-2016-5-3-84-89

Аннотация

Легкие являются одним из наиболее уязвимых органов для формирования фибропластических процессов вследствие наличия большого количества клеток-мишеней с ярко выраженными межклеточными взаимодействиями. Знание механизмов нарушения межклеточных взаимодействий и механизмов ремоделирования внеклеточного матрикса при пневмофиброзе различной этиологии лежит в основе разработки эффективных методов лечения этих заболеваний. На современном этапе важная роль отводится концепции эпителиально-мезенхимального перехода (ЭМП). Исследования идут в направлении поиска основных молекулярных посредников ЭМП - факторов роста, цитокинов. Тем не менее, в настоящее время неизвестно большинство ключевых моментов в реализации механизмов ЭМП. До настоящего времени не решен вопрос, является ли реваскуляризация патогенетическим механизмом, способствующим прогрессированию фиброза легких, или компенсаторным механизмом при повреждении ткани легкого. Анализ этих закономерностей открывает новые возможности терапии различных заболеваний, сопровождающихся пневмосклерозом.

Об авторах

Андрей Витальевич Хоринко
ГБУЗ ПК «Пермский краевой онкологический диспансер»
Россия


Дмитрий Георгиевич Амарантов
ГБОУ ВПО «Пермский государственный медицинский университет им. акад. Е. А. Вагнера» Минздрава РФ
Россия


Полина Владимировна Косарева
ГБОУ ВПО «Пермский государственный медицинский университет им. акад. Е. А. Вагнера» Минздрава РФ
Россия


Список литературы

1. Итмезех А. Механизмы развития пневмопатии при различных путях проникновения эндотоксинов в легочную ткань / А. Итмезех, Ю.В. Дегтярь // Бюллетень Волгоградского научного центра РАМН. 2005. № 1. С. 34-35.

2. Datta A. Novel therapeutic approaches for pulmonary fibrosis Pulmonary fibrosis British Journal of Pharmacology / A. Datta, C.J. Scotton, R.C. Chambers // Themed Issue: Respiratory Pharmacology. 2011. V. 163. P. 141-172.

3. Maher T. M. Pirfenidone in idiopathic pulmonary fibrosis / T.M. Maher // Drugs Today (Barc). 2010. Vol. 46. P. 473-482.

4. Survival of Apligraf in acute human wounds / M. Griffiths [et al]. // Tissue Eng. 2004. Vol. 10. No 7-8. P. 1180-1195.

5. Scotton C. J. Molecular targets in pulmonary fibrosis: the myofibroblast in focus / C.J. Scotton, R.C. Chambers // Chest. 2007. Vol. 132. P. 1311-1321.

6. Moodley Y. P. Comparison of the morphological and biochemical changes in normal human lung fibroblasts and fibroblasts derived from lungs of patients with idiopathic pulmonary fibrosis during FasL-induced apoptosis / Y.P. Moodley, P. Caterina, A.K. Scaffidi // J. Pathol. 2004. Vol. 202. P. 486-495.

7. Covering by a flap induces apoptosis of granulation tissue myofibroblasts and vascular cells / S. Garbin [et al.] // Wound Repair Regen. 1996. Vol. 4. No 2. P. 244-251.

8. Tuong V. Markers of cell proliferation, apoptosis and angiogenesis in Remodeling of bronchoalveolar duct junctions. Polish Histochemichal et Cytological Society / V. Tuong, S. Demoura, E. Kogan // Folia Histochemica et Cytobiologica. 2008. V. 46, N 2. P. 62.

9. Demoura S. Apoptosis, cell proliferation and angiogenesis in progression of different variants of idiopathic interstitial pneumonia / S. Demoura, V. Tuong, E. Kogan // European Respiratory journal. 2007. Vol. 30. No 51. P. 3405.

10. Kogan E. Initiating morphological and molecular events at bronchoalveolar duct junctions in progression of idiopathic pulmonary fibrosis / E. Kogan, V. Tuong, S. Demoura // Histopathology. 2008. Vol. 53. No 1. P. 350-351.

11. Moodley Y. P. Fibroblasts isolated from normal lungs and those with idiopathic pulmonary fibrosis differ in interleukin-6/ gp130-mediated cell signaling and proliferation / Y.P. Moodley, A.K. Scaffidi, N.L. // Misso Am J Pathol. 2003. Vol. 163. P. 345-354.

12. Scotton C. J. Increased local expression of coagulation factor X contributes to the fibrotic response in human and murine lung injury / C.J. Scotton, M.A. Krupiczojc, M.J. Konigshoff // Clin Invest. 2009. Vol. 119. P. 2550-2563.

13. Moustakas A. TGFβ and matrix-regulated epithelial to mesenchymal transition / A. Moustakas, P. Heldin // Biochimica et Biophysica Acta (BBA) - General Subjects. 2014. Vol. 1840. No 8. P. 2621-2634.

14. Кузник Б. И. Клеточные и молекулярные механизмы регуляции системы гемостаза в норме и патологии / Б.И. Кузник. Чита: Экспресс-издательство, 2010. 832 c.

15. Кетлинский С. А. Цитокины / С.А. Кетлинский, А.С. Симбирцев. СПб.: Фолиант, 2008. 552 c.

16. Subramanian S. V. Induction of vascular smooth muscle alpha-actin gene transcription in transforming growth factor beta1-activated myofibroblasts mediated by dynamic interplay between the Pur repressor proteins and Sp1/Smad coactivators / S.V. Subramanian, J.A. Polikandriotis, R.J. Kelm // Mol Biol Cell. 2004. Vol. 15. P. 4532-4543.

17. Leask A. Signaling in fibrosis: targeting the TGF beta, endothelin-1 and CCN2 axis in scleroderma / A. Leask. Front Biosci (Elite Ed). 2009. Vol. 1. P. 115-122.

18. Kogan E. Matrix metalloproteinases and their tissue inhibitors in Remodeling of bronchoalveolar duct junctions / E. Kogan, V. Tuong, S. Demoura // Polish Histochemichal et Cytological Society. Folia Histochemica et Cytobiologica. 2008. Vol. 46. No 2. P. 98: P3.44.

19. Kogan E. MMPs and TIMP-4 in remodeling of extracellular matrix, fibrosis, cell proliferation in different variants of idiopathic chronic interstitial pneumonias / E. Kogan, V. Тuong, S. Demoura // Virchows archive. 2007. Vol. 451. No 2. P. 21-25.

20. Kolodsick J. E. Protection from fluorescein isothiocyanate-induced fibrosis in IL-13-deficient, but not IL-4-deficient, mice results from impaired collagen synthesis by fibroblasts / J.E. Kolodsick, G.B. Toews, C. Jakubzick // J. Immunol. 2004. Vol. 172. P. 4068-4076.

21. Xaubet A. Cyclooxygenase-2 is up-regulated in lung parenchyma of chronic obstructive pulmonary disease and down-regulated in idiopathic pulmonary fibrosis / A. Xaubet, J. Roca-Ferrer, L. Pujols // Sarcoidosis Vasc. Diffuse Lung Dis. 2004. Vol. 21. P. 35-42.

22. Bauman K. A. The antifibrotic effects of plasminogen activation occur via prostaglandin E2 synthesis in humans and mice / K.A. Bauman, S.H. Wettlaufer, K. Okunishi // J. Clin Invest. 2010. Vol. 120. P. 1950-1960.

23. Epithelial-mesenchymal transitions in development and disease / J.P. Thiery, H. Acloque, R.Y. Huang, M.A. Nieto // Cell. 2009. Vol. 139. No 5. P. 871-890.

24. Kim K. K. Epithelial cell alpha3beta1 integrin links beta-catenin and Smad signaling to promote myofibroblast formation and pulmonary fibrosis / K.K. Kim, Y. Wei, C. Szekeres // J. Clin. Invest. 2009. Vol. 119. P. 213-224.

25. Котенко К. Эпителиально-мезенхимальный переход и опухолевая прогрессия / К. Котенко // Онкология. Огляд. 2014: ZU_2014_Onko_3.qxd 27.06.2014 15:45; 39; http://health-ua.com/pics/pdf/ZU_2014_Onko_3/39.pdf.

26. Волков К. С. Роль эпителиально-мезенхимального перехода в патогенезе заживления кожных ран / К.С. Волков, С.Б. Крамар // Morphologia (Морфологiя). 2015. Т. 9. № 2. С. 7-10.

27. Wynn T. A. Cellular and molecular mechanisms of fibrosis / T.A.Wynn // The Journal of Pathology. 2008. Vol. 214. No 2. P. 199-210.

28. Осинский С. П. Микроокружение опухолевых клеток и опухолевая прогрессия. Факторы стромального микроокружения / С.П. Осинский // Здоров’я УкраÏни. 2013. № 6. С. 36-39.

29. Gunther A. Prevention of bleomycin-induced lung fibrosis by aerosolization of heparin or urokinase in rabbits / A. Gunther, N. Lubke, M. Ermert // Am. J. Respir. Crit. Care Med. 2003. Vol.168. P. 1358-1365.

30. Epithelial-Mesenchymal Transition in tumor microenvironment / Y. Jing [et al.] // Cell Biosci. 2011. Vol. 1. P. 29.

31. Lindsey S. Crosstalk of Oncogenic Signaling Pathways during Epithelial-Mesenchymal Transition / S. Lindsey, S.A. Langhans // Front. Oncol. 2014. Vol. 4. P. 358.

32. Lamouille S. Molecular mechanisms of epithelial-mesenchymal transition / S. Lamouille, J. Xu, R. Derynck // Nat. Rev. Mol. Cell. Biol. 2014. Vol. 15. No 3. P. 178-196.

33. Yang J. Epithelial-Mesenchymal Transition: At the Crossroads of Development and Tumor Metastasis / J. Yang, R.A. Weinberg // Developmental Cell. 2008. Vol. 14. No 6. P. 818-829.

34. Royer C. Epithelial cell polarity: a major gatekeeper against cancer? / C. Royer, X. Lu // Cell Death Differ. 2011. Vol. 18. No 9. P. 1470-1477.

35. Xu J. TGF-induced epithelial to mesenchymal transition / J. Xu, S. Lamouille, R. Derynck // Cell Research. 2009. Vol. 19. P. 156-172.

36. Acquisition of Epithelial-Mesenchymal Transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of Notch signaling pathway / Z. Wang, Y. Li, D. Kong, S. Banerjee // Cancer Res. 2009. Vol. 69. No 6. P. 2400-2407.

37. Nieto M. A. Epithelial-Mesenchimal transition in development and desease: old views and new perspectives / M.A. Nieto // Int. J. Dev. Biol. 2008. Vol. 52. P. 1-7.

38. Heng D. Y. Prognostic factors for overall survival in patients with metastatic renal cell carcinoma treated with vascular endothelial growth factor-targeted agents: results from a large, multicenter study / D.Y. Heng, W. Xie, M.M. Regan // J. Clin. Oncol. 2009. Vol. 27. P. 5794-5799.

39. Кудряшов А. Г. Морфологические особенности эпителиально-мезенхимальной трансформации в карциномах почки и их связь с клиническим течением опухоли / А.Г. Кудряшов, И.В. Василенко, А.С. Малашкевич // Український Журнал Хірургії. 2011. Т. 6. №15. С. 147-154.

40. Moore B. B. The role of CCL12 in the recruitment of fibrocytes and lung fibrosis / B.B. Moore, L. Murray, A. Das // Am. J. Respir. Cell. Mol. Biol. 2006. Vol. 35. P. 175-181.

41. Mehrad B. Fibrocyte CXCR4 regulation as a therapeutic target in pulmonary fibrosis / B. Mehrad, M.D. Burdick, R.M. Strieter // Int. J. Biochem. Cell. Biol. 2009. Vol. 41. P. 1708-1718.

42. Hashimoto N. Endothelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis / N. Hashimoto, S.H. Phan, K. Imaizumi // Am. J. Respir. Cell. Mol. Biol. 2010. Vol. 43. P. 161-172.

43. Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing / N.S. Greaves, K.J. Ashcroft, M. Baguneid, A. Bayat // J. Dermatol. Sci. 2013. Vol. 72. No 3. P. 206-217.

44. Novikov N. Y. Pathomorphological changes acute lung injury / N.Y. Novikov, S.I. Dolomatov, T.I. Prokopenko // J. Health Sci. 2011. Vol. 1. No 4. P. 173-178.

45. Molecular Mediators of Angiogenesis / A.A. Ucuzian, A.A. Gassman, A.T. East, H.P. Greisler // J. Burn. Care Res. 2010. Vol. 31. No 1. P. 158.

46. Chow K. Dysfunctional resident lung mesenchymal stem cells contribute to pulmonary microvascular remodeling / K. Chow, J.P. Fessel, E.P. Schmidt // Pulmonary Circulation. 2013. Vol. 3. No 1. P. 31-50.

47. Scotton C. J. Pulmonary fibrosis British Journal of Pharmacology / C.J. Scotton, R.C. Chambers // 2011. Vol. 163. P. 141-172.


Рецензия

Для цитирования:


Хоринко А.В., Амарантов Д.Г., Косарева П.В. Роль нарушения клеточно-матриксных взаимодействий в патогенезе прогрессирования фиброза легких. Журнал анатомии и гистопатологии. 2016;5(3):84-89. https://doi.org/10.18499/2225-7357-2016-5-3-84-89

For citation:


Khorinko A.V., Amarantov D.G., Kosareva P.V. The Role of the Disorders of Cell Matrix Interactions in the Pathogenesis of Pulmonary Fibrosis Progression. Journal of Anatomy and Histopathology. 2016;5(3):84-89. (In Russ.) https://doi.org/10.18499/2225-7357-2016-5-3-84-89

Просмотров: 256


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2225-7357 (Print)