Phenotypic features of medial epiphyseal growth plate cells in the proximal tibia in Blount's disease
https://doi.org/10.18499/2225-7357-2025-14-2-79-87
Abstract
The aim of the study was to identify the phenotype of medial epiphyseal growth plate cells in the proximal tibia in Blount's disease. Material and methods. The study was conducted on medial epiphyseal growth plates of the proximal tibia in unilateral Blount's disease of stages III–IV. Cartilage tissue samples were obtained at the Pediatric Orthopedics Clinic of the Novosibirsk Research Institute of Traumatology and Orthopedics from 5 children (4 girls, 1 boy) aged 3 to 8 years. Growth plate cells were cultured up to passage 4 and analyzed using immunofluorescence microscopy for chondrogenic (Collagen II) and neural markers (Musashi-1, PAX6 , SOX2, NF200). Morphometric measurements were conducted with ImageJ software. Results. Two different cell phenotypes were observed in the proximal tibial growth plates of individuals with Blount's disease. Type 1: Chondrocytes exhibiting a differentiation gradient, with type II collagen positivity and absence of neural marker staining. Type 2: Cells displaying either bipolar or multipolar architecture, with multiple thin processes. Neural-phenotype cells showed positive expression of both early-stage markers (Musashi-1, PAX6, SOX2) and the mature neuronal marker NF200. The nuclear, cytoplasmic, and cellular areas, as well as nuclear-to- cytoplasmic ratios, showed statistically significant differences between the identified phenotypes. Conclusion. Neural lineage cells were detected in the dysregulated growth plate microenvironment of Blount's disease. We hypothesize that neural crest-derived cells may contribute to the pathogenesis of knee joint defects in this context.
About the Authors
E. L. StrokovaRussian Federation
Elena L. Strokova – Cand. Sci. (Biol.), Senior Researcher, Research Department of Scientific Research Organization
ul. Frunze, 17, Novosibirsk, 630091
N. Yu. Pakhomova
Russian Federation
Natal'ya Yu. Pakhomova – Cand. Sci. (Med.), Associate Professor, Leading Researcher Research Department of Scientific Research Organization
Novosibirsk
A. I. Shevchenko
Russian Federation
Aleksandr I. Shevchenko – Cand. Sci. (Biol.), Senior Researcher of Developmental Epigenetics Laboratory
Novosibirsk
V. V. Kozhevnikov
Russian Federation
Vadim V. Kozhevnikov – Cand. Sci. (Med.), Head of Pediatric Orthopedics Department
Novosibirsk
S. V. Zalavina
Russian Federation
Svetlana V. Zalavina – Doct. Sci. (Med.), Associate Professor, Head of Histology, Embryology and Cytology Department
Novosibirsk
S. V. Mashak
Russian Federation
Svetlana V. Mashak – Doct. Sci. (Med.), Professor of Histology, Embryology and Cytology Department
Novosibirsk
D. V. Zhukov
Russian Federation
Dmitrii V. Zhukov – Doct. Sci. (Med.), Associate Professor of Traumatology and Orthopedics Department
Novosibirsk
A. A. Korytkin
Russian Federation
Andrei A. Korytkin – Cand. Sci. (Med.), Associate Professor, Head
Novosibirsk
References
1. Strokova E.L., Pakhomova N.Yu., Shevchenko A.I., Korytkin A.A., Kozhevnikov V.V., Zaidman A.M. Fenotipicheskie osobennosti kletok rebernogo khryashcha pri voronkoobraznoi deformatsii grudnoi kletki. Sibirskii nauchnyi meditsinskii zhurnal. 2023;43(6):197–203. (In Russ.). doi: 10.18699/SSMJ20230624.
2. Adulkasem N, Wongcharoenwatana J, Ariyawatkul T, Chotigavanichaya C, Eamsobhana P. A Predictive Score for Infantile Blount Disease Recurrence After Tibial Osteotomy. J Pediatr Orthop. 2023 Apr 1;43(4): 299–304. doi: 10.1097/BPO.0000000000002345.
3. Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003 Jan 1;17(1):126–40. doi: 10.1101/gad.224503.
4. Banwarie RR, Hollman F, Meijs N, Arts JJ, Vroemen P, Moh P, et al. Insight into the possible aetiologies of Blount's disease: a systematic review of the literature. J Pediatr Orthop B. 2020 Jul;29(4):323–36. doi: 10.1097/BPB.0000000000000677.
5. Benes G, Ghanem D, Badin D, Greenberg M, Honcharuk E. The Effect of Socioeconomic Deprivation on Radiographic Deformities in Children With Blount Disease. J Pediatr Orthop. 2024 Apr 1;44(4):254–9. doi: 10.1097/BPO.0000000000002608.
6. Chen SY, Cheng AMS, Zhang Y, Zhu YT, He H, Mahabole M, et al. Pax 6 Controls Neural Crest Potential of Limbal Niche Cells to Support Self-Renewal of Limbal Epithelial Stem Cells. Sci Rep. 2019 Jul 5;9(1):9763. doi: 10.1038/s41598-019-45100-7.
7. Cigala F, Montagnani S, D’Anna M, Di Meglio F, Cigala M, Del Gaizo C. Immunohistochemical and J immunocytochemical findings in Blount’s disease. Orthopaed Tramatol. 2003;4:84–9. doi: 10.1007/s10195-003-0015-4.
8. De Pablos J, Arbeloa-Gutierrez L, Arenas-Miquelez A. Update on treatment of adolescent Blount disease. Curr Opin Pediatr. 2018 Feb;30(1):71–7. doi: 10.1097/MOP.0000000000000569.
9. Ferri AL, Cavallaro M, Braida D, Di Cristofano A, Canta A, Vezzani A, et al. Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development. 2004 Aug;131(15):3805–19. doi: 10.1242/dev.01204.
10. Hollman F, Korpisah J, Ismail AH, Rompa P, Moh P, van Rhijn LW, et al. W/M serrated osteotomy for infantile Blount's disease in Ghana: Short-term results. Niger J Clin Pract. 2016 Jul-Aug;19(4):443–8. Doi: 10.4103/1119-3077.183305.
11. Jandial R, Singec I, Ames CP, Snyder EY. Genetic modification of neural stem cells. Mol Ther. 2008 Mar;16(3):450–7. doi: 10.1038/sj.mt.6300402
12. Janoyer M. Blount disease. Orthop Traumatol Surg Res. 2019 Feb;105(1S):111–21. doi: 10.1016/j.otsr.2018.01.009.
13. Klyce W, Badin D, Gandhi JS, Lee RJ, Horn BD, Honcharuk E. Racial differences in late-onset Blount disease. J Child Orthop. 2022 Jun;16(3):161–6. Doi: 10.1177/18632521221091501.
14. Luo Y, Sinkeviciute D, He Y, Karsdal M, Henrotin Y, Mobasheri A, et al. The minor collagens in articular cartilage. Protein Cell. 2017 Aug;8(8):560–72. doi: 10.1007/s13238-017-0377-7.
15. Miraj F, Ajiantoro, Arya Mahendra Karda IW. Step cut V osteotomy for acute correction in Blount's disease treatment: A case series. Int J Surg Case Rep. 2019 Apr 6;58:57–62. doi: 10.1016/j.ijscr.2019.03.044.
16. Okano H, Imai T, Okabe M. Musashi: a translational regulator of cell fate. J Cell Sci. 2002 Apr 1;115(Pt 7):1355–9. doi: 10.1242/jcs.115.7.1355.
17. Okano H, Kawahara H, Toriya M, Nakao K, Shibata S, Imai T. Function of RNA-binding protein Musashi-1 in stem cells. Exp Cell Res. 2005 Jun 10;306(2):349–56. doi: 10.1016/j.yexcr.2005.02.021.
18. Osumi N, Shinohara H, Numayama-Tsuruta K, Maekawa M. Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator. Stem Cells. 2008 Jul;26(7):1663–72. doi: 10.1634/stemcells.2007-0884.
19. Pelegri NG, Gorrie CA, Santos J. Rat Hippocampal Neural Stem Cell Modulation Using PDGF, VEGF, PDGF/VEGF, and BDNF. Stem Cells Int. 2019 Mar 18;2019:4978917. doi: 10.1155/2019/4978917.
20. Porseva VV, Smirnova VP, Korzina MB, Emanuilov AI, Masliukov PM. Age-associated changes in sympathetic neurons containing neurofilament 200 kDa during chemical deafferentation. Bull Exp Biol Med. 2013 Jun;155(2):268–71. doi: 10.1007/s10517-013-2129-x.
21. Sabharwal S, Sabharwal S. Treatment of Infantile Blount Disease: An Update. J Pediatr Orthop. 2017 Sep;37 Suppl 2:26–31. doi: 10.1097/BPO.0000000000001027.
22. Wenger DR, Mickelson M, Maynard JA. The evolution and histopathology of adolescent tibia vara. J Pediatr Orthop. 1984 Jan;4(1):78–88. doi: 10.1097/01241398-198401000-00016
Review
For citations:
Strokova E.L., Pakhomova N.Yu., Shevchenko A.I., Kozhevnikov V.V., Zalavina S.V., Mashak S.V., Zhukov D.V., Korytkin A.A. Phenotypic features of medial epiphyseal growth plate cells in the proximal tibia in Blount's disease. Journal of Anatomy and Histopathology. 2025;14(2):79-87. (In Russ.) https://doi.org/10.18499/2225-7357-2025-14-2-79-87