Preview

Журнал анатомии и гистопатологии

Расширенный поиск

Полидендроциты – недифференцированные клетки нервной системы

https://doi.org/10.18499/2225-7357-2022-11-1-66-73

Аннотация

Клетки-предшественники олигодендроцитов, oligodendrocyte progenitor cells (OPCs) были впервые описаны более двух десятилетий назад. Новые методы маркировки выявили, что они являются самостоятельными клетками с высоким потенциалом репарации нервной ткани, и их классифицировали как четвертый тип глиальных клеток в дополнение к астроцитам, олигодендроцитам и микроглиальным клеткам. Другой термин, используемый для обозначения таких клеток – полидендроциты, что связано как с их морфологией, так и с развивающимися знаниями об их разнообразных функциях. OPCs играют важную роль в развитии и миелиногенезе у взрослых, давая начало олигодендроцитам, которые покрывают аксоны, обеспечивая изоляцию сигнала миелиновой оболочкой, что позволяет ускорить распространение потенциала действия и обеспечить высокую точность передачи без необходимости увеличения диаметра аксона. Потеря или отсутствие OPCs и, как следствие, отсутствие дифференцированных олигодендроцитов ассоциируется с потерей миелинизации и последующим нарушением неврологических функций. Демиелинизация характерна для множества заболеваний, таких как рассеянный склероз, болезнь Альцгеймера, шизофрения, а также детский церебральный паралич и когнитивные нарушения детского возраста. Кроме того, OPCs экспрессируют рецепторы для различных нейротрансмиттеров и подвергаются деполяризации мембраны, получая синаптические сигналы от нейронов. Исследованию функционала и возможностей использования полидендроцитов в качестве клеток-мишеней для лечения и профилактики заболеваний нервной ткани посвящено множество работ. В настоящее время в нашей стране нет работ, посвященных исследованию морфологии, функции и возможностей OPCs. В этом обзоре мы рассмотрели историю открытия полидендроцитов, их локализацию и миграционные потенции, а также возможности ремиелинизации посредством OPCs при гипоксическом повреждении в эмбриональном и постнатальном периоде.

Об авторах

Л. В. Вихарева
Тюменский государственный медицинский университет
Россия

Вихарева Лариса Владимировна – д-р. мед. наук, профессор, кафедра анатомии человека, топографической анатомии и оперативной хирургии

ул. Одесская, 54, Тюмень, 625023



Е. И. Новиков
Тюменский государственный медицинский университет
Россия

Новиков Евгений Игоревич

г. Тюмень



Е. С. Новикова
Западно-Сибирский медицинский центр Федерального медико-биологического агентства
Россия

Новикова Елизавета Сергеевна

г. Тюмень



А. В. Маргарян
Тюменский государственный медицинский университет
Россия

Маргарян Артур Ванушович

г. Тюмень



Список литературы

1. Alchanatis M, Deligiorgis N, Zias N, Amfilochiou A, Gotsis E, Karakatsani A, et al. Frontal brain lobe impairment in obstructive sleep apnoea: a proton MR spectroscopy study. European Respiratory Journal. 2004;24:980–6. doi: 10.1183/09031936.04.00127603

2. Auderset L., Landowski L.M., Foa L., Young K.M. Low density lipoprotein receptor related proteins as regulators of neural stem and progenitor cell function. Stem Cells International. 2017;2016:1–16. doi: 10.1155/2016/2108495

3. Back SA. Brain Injury in the Preterm Infant: New Horizons for Pathogenesis and Prevention. Pediatric Neurology. 2015 Sep;53(3):185–92. doi: 10.1016/j.pediatrneurol.2015.04.006

4. Bailey DM. Oxygen and brain death; back from the brink. Experimental Physiology. 2019 Nov 28;104(12):1769–79. doi: 10.1113/EP088005

5. Bamfo JEAK, Odibo AO. Diagnosis and Management of Fetal Growth Restriction. Journal of Pregnancy. 2011;2011:1–15. doi: 10.1155/2011/640715

6. Barak B, Zhang Z, Liu Y, Nir A, Trangle SS, Ennis M, et al. Neuronal deletion of Gtf2i, associated with Williams syndrome, causes behavioral and myelin alterations rescuable by a remyelinating drug. Nature Neuroscience. 2019 Apr 22;22(5):700–8. doi: 10.1038/s41593-019-0380-9

7. Baydyuk M, Morrison VE, Gross PS, Huang JK. Extrinsic Factors Driving Oligodendrocyte Lineage Cell Progression in CNS Development and Injury. Neurochemical Research. 2020 Jan 29;45(3):630–42. doi: 10.1007/s11064-020-02967-7

8. Bignami A, Eng LF, Dahl D, Uyeda CT. Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Research. 1972 Aug;43(2):429–35. doi: 10.1016/0006-8993(72)90398-8

9. Blair EM, Nelson KB. Fetal growth restriction and risk of cerebral palsy in singletons born after at least 35 weeks’ gestation. American Journal of Obstetrics and Gynecology. 2015 Apr;212(4):520.e1–7. doi: 10.1016/j.ajog.2014.10.1103

10. Boshans LL, Factor DC, Singh V, Liu J, Zhao C, Mandoiu I, et al. The Chromatin Environment Around Interneuron Genes in Oligodendrocyte Precursor Cells and Their Potential for Interneuron Reprograming. Frontiers in Neuroscience. 2019 Aug 8;13. doi: 10.3389/fnins.2019.00829

11. Chapman H, Waclaw RR, Pei Z, Nakafuku M, Campbell K. The homeobox gene Gsx2 controls the timing of oligodendroglial fate specification in mouse lateral ganglionic eminence progenitors. Development. 2013 May 1;140(11):2289–98. doi: 10.1242/dev.091090

12. Chen X, Wang F, Gan J, Zhang Z, Liang X, Li T, et al. Myelin Deficits Caused by Olig2 Deficiency Lead to Cognitive Dysfunction and Increase Vulnerability to Social Withdrawal in Adult Mice. Neuroscience Bulletin. 2020 Apr 1;36(4):419–26. doi: 10.1007/s12264-019-00449-7

13. Curtis WJ, Lindeke LL, Georgieff MK, Nelson CA. Neurobehavioural functioning in neonatal intensive care unit graduates in late childhood and early adolescence. Brain. 2002 Jul 1;125(7):1646–59. doi: 10.1093/brain/awf159

14. Delcour M, Russier M, Amin M, Baud O, Paban V, Barbe MF, et al. Impact of prenatal ischemia on behavior, cognitive abilities and neuroanatomy in adult rats with white matter damage. Behavioural Brain Research. 2012 Jun;232(1):233–44. doi: 10.1016/j.bbr.2012.03.029

15. Duerden EG, Halani S, Ng K, Guo T, Foong J, Glass TJA, et al. White matter injury predicts disrupted functional connectivity and microstructure in very preterm born neonates. NeuroImage: Clinical. 2019;21:101596. doi: 10.1016/j.nicl.2018.11.006

16. Elbaz B, Popko B. Molecular Control of Oligodendrocyte Development. Trends in Neurosciences. 2019 Apr;42(4):263–77. doi: 10.1016/j.tins.2019.01.002

17. Ferriero DM. Neonatal Brain Injury. New England Journal of Medicine. 2004 Nov 4;351(19):1985–95. doi: 10.1056/NEJMra041996

18. Forbes TA, Goldstein EZ, Dupree JL, Jablonska B, Scafidi J, Adams KL, et al. Environmental enrichment ameliorates perinatal brain injury and promotes functional white matter recovery. Nature Communications. 2020 Feb 19;11(1). doi: 10.1038/s41467-020-14762-7

19. Green AJ, Gelfand JM, Cree BA, Bevan C, Boscardin WJ, Mei F, et al. Clemastine fumarate as a remyelinating therapy for multiple sclerosis (Re- BUILD): a randomised, controlled, double-blind, crossover trial. Lancet (London, England). 2017;390(10111):2481–9. doi: 10.1016/S0140-6736(17)32346-2

20. Hamashima T, Ishii Y, Nguyen LQ, Okuno N, Sang Y, Matsushima T, et al. Oligodendrogenesis and Myelin Formation in the Forebrain Require Platelet- derived Growth Factor Receptor-alpha. Neuroscience. 2020 Jun;436:11–26. doi: 10.1016/j.neuroscience.2020.04.001

21. Huang W, Bhaduri A, Velmeshev D, Wang S, Wang L, Rottkamp CA, et al. Origins and Proliferative States of Human Oligodendrocyte Precursor Cells. Cell. 2020 Aug;182(3):594-608.e11. doi: 10.1016/j.cell.2020.06.027

22. Hughes EG, Orthmann-Murphy JL, Langseth AJ, Bergles DE. Myelin remodeling through experience- dependent oligodendrogenesis in the adult somatosensory cortex. Nature Neuroscience. 2018 Mar 19;21(5):696–706. doi: 10.1038/s41593-018-0121-5

23. Kawamura A, Katayama Y, Nishiyama M, Shoji H, Tokuoka K, Ueta Y, et al. Oligodendrocyte dysfunction due to Chd8 mutation gives rise to behavioral deficits in mice. Human Molecular Genetics. 2020 Mar 6;29(8):1274–91. doi: 10.1093/hmg/ddaa036

24. Kessaris N, Fogarty M, Iannarelli P, Grist M, Wegner M, Richardson WD. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nature Neuroscience. 2006 Feb 1;9(2):173–9. doi: 10.1038/nn1620

25. Khuu MA, Pagan CM, Nallamothu T, Hevner RF, Hodge RD, Ramirez J-M, et al. Intermittent Hypoxia Disrupts Adult Neurogenesis and Synaptic Plasticity in the Dentate Gyrus. The Journal of Neuroscience. 2018 Dec 26;39(7):1320–31. doi: 10.1523/jneurosci.1359-18.2018

26. Levine J, Stallcup W. Plasticity of developing cerebellar cells in vitro studied with antibodies against the NG2 antigen. The Journal of Neuroscience. 1987 Sep 1;7(9):2721–31. doi: 10.1523/jneurosci.07-09-02721.1987

27. Li X, Pontén A, Aase K, Karlsson L, Abramsson A, Uutela M, et al. PDGF-C is a new proteaseactivated ligand for the PDGF α-receptor. Nature Cell Biology. 2000 Apr 7;2(5):302–9. doi: 10.1038/35010579

28. Luo W, Wang X, Kageshita T, Wakasugi S, Karpf AR, Ferrone S. Regulation of high molecular weight-melanoma associated antigen (HMWMAA) gene expression by promoter DNA methylation in human melanoma cells. Oncogene. 2006 Jan 16;25(20):2873–84. doi: 10.1038/sj.onc.1209319

29. Marisca R, Hoche T, Agirre E, Hoodless LJ, Barkey W, Auer F, et al. Functionally distinct subgroups of oligodendrocyte precursor cells integrate neural activity and execute myelin formation. Nature Neuroscience. 2020 Feb 17;23(3):363–74. doi: 10.1038/s41593-019-0581-2

30. Mei F, Fancy SPJ, Shen Y-AA, Niu J, Zhao C, Presley B, et al. Micropillar arrays as a highthroughput screening platform for therapeutics in multiple sclerosis. Nature Medicine. 2014 Jul 6;20(8):954–60. doi: 10.1038/nm.3618

31. Mei F, Lehmann-Horn K, Shen Y-AA, Rankin KA, Stebbins KJ, Lorrain DS, et al. Accelerated remyelination during inflammatory demyelination prevents axonal loss and improves functional recovery. eLife. 2016 Sep 27;5:10. doi: 10.7554/eLife.18246

32. Mei F, Wang H, Liu S, Niu J, Wang L, He Y, et al. Stage-Specific Deletion of Olig2 Conveys Opposing Functions on Differentiation and Maturation of Oligodendrocytes. Journal of Neuroscience. 2013 May 8;33(19):8454–62. doi: 10.1523/jneurosci.2453-12.2013

33. Miller SL, Huppi PS, Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. The Journal of Physiology. 2016 Feb 15;594(4):807–23. doi: 10.1113/jp271402

34. Nishiyama A, Yu M, Drazba JA, Tuohy VK. Normal and reactive NG2+ glial cells are distinct from resting and activated microglia. Journal of Neuroscience Research. 1997 May 15;48(4):299–312. doi: 10.1002/(sici)1097-4547(19970515)48:4<299::aid-jnr2>3.0.co;2-6

35. Orduz D, Benamer N, Ortolani D, Coppola E, Vigier L, Pierani A, et al. Developmental cell death regulates lineage-related interneuronoligodendroglia functional clusters and oligodendrocyte homeostasis. Nature Communications. 2019 Sep 18;10(1). doi: 10.1038/s41467-019-11904-4

36. Pan S, Mayoral SR, Choi HS, Chan JR, Kheirbek MA. Preservation of a remote fear memory requires new myelin formation. Nature Neuroscience. 2020 Feb 10;23(4):487–99. doi: 10.1038/s41593-019-0582-1

37. Pan Y, Jiang Z, Sun D, Li Z, Pu Y, Wang D, et al. Cyclin-dependent Kinase 18 Promotes Oligodendrocyte Precursor Cell Differentiation through Activating the Extracellular Signal-Regulated Kinase Signaling Pathway. Neuroscience Bulletin. 2019 Apr 26;35(5):802–14. doi: 10.1007/s12264-019-00376-7

38. Pluschke G, Vanek M, Evans A, Dittmar T, Schmid P, Itin P, et al. Molecular cloning of a human melanoma-associated chondroitin sulfate proteoglycan. Proceedings of the National Academy of Sciences. 1996 Sep 3;93(18):9710–5. doi: 10.1073/pnas.93.18.9710

39. Polito A, Reynolds R. NG2-expressing cells as oligodendrocyte progenitors in the normal and demyelinated adult central nervous system. Journal of Anatomy. 2005 Dec;207(6):707–16. doi: 10.1111/j.1469-7580.2005.00454.x

40. Raff MC, Miller RH, Noble M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature. 1983 Jun;303(5916):390–6. doi: 10.1038/303390a0

41. Rankin KA, Mei F, Kim K, Shen Y-AA, Mayoral SR, Desponts C, et al. Selective Estrogen Receptor Modulators Enhance CNS Remyelination Independent of Estrogen Receptors. The Journal of Neuroscience. 2019 Jan 29;39(12):2184–94. doi: 10.1523/jneurosci.1530-18.2019

42. Rantakari K, Rinta-Koski O-P, Metsäranta M, Hollmén J, Särkkä S, Rahkonen P, et al. Early oxygen levels contribute to brain injury in extremely preterm infants. Pediatric Research. 2021 Mar 22;90(1):131–9. doi: 10.1038/s41390-021-01460-3

43. Rash BG, Duque A, Morozov YM, Arellano JI, Micali N, Rakic P. Gliogenesis in the outer subventricular zone promotes enlargement and gyrification of the primate cerebrum. Proceedings of the National Academy of Sciences of the United States of America. 2019 Apr 2;116(14):7089–94. doi: 10.1073/pnas.1822169116

44. Raymond GV, Aubourg P, Paker A, Escolar M, Fischer A, Blanche S, et al. Survival and Functional Outcomes in Boys with Cerebral Adrenoleukodystrophy with and without Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation. 2019 Mar;25(3):538–48. doi: 10.1016/j.bbmt.2018.09.036

45. Ren Z, Xu F, Zhang X, Zhang C, Miao J, Xia X, et al. Autologous cord blood cell infusion in preterm neonates safely reduces respiratory support duration and potentially preterm complications. Stem Cells Translational Medicine. 2019 Nov 8;9(2):169–76. doi: 10.1002/sctm.19-0106

46. Rivers LE, Young KM, Rizzi M, Jamen F, Psachoulia K, Wade A, et al. PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nature Neuroscience. 2008 Dec 1;11(12):1392–401. doi:10.1038/nn.2220

47. Rumajogee P, Bregman T, Miller SP, Yager JY, Fehlings MG. Rodent Hypoxia–Ischemia Models for Cerebral Palsy Research: A Systematic Review. Frontiers in Neurology. 2016 Apr 25;7:57. doi: 10.3389/fneur.2016.00057

48. Shen S, Li J, Casaccia-Bonnefil P. Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. Journal of Cell Biology. 2005 May 16;169(4):577–89. doi: 10.1083/jcb.200412101

49. Stallcup W, Beasley L. Bipotential glial precursor cells of the optic nerve express the NG2 proteoglycan. The Journal of Neuroscience. 1987 Sep 1;7(9):2737–44. doi: 10.1523/jneurosci.07-09-02737.1987

50. Steadman PE, Xia F, Ahmed M, Mocle AJ, Penning ARA, Geraghty AC, et al. Disruption of Oligodendrogenesis Impairs Memory Consolidation in Adult Mice. Neuron. 2019 Nov;105:150–64.e6. doi: 10.1016/j.neuron.2019.10.013

51. Streimish IG, Ehrenkranz RA, Allred EN, O’Shea TM, Kuban KCK, Paneth N, et al. Birth weightand fetal weight-growth restriction: Impact on neurodevelopment. Early Human Development. 2012 Sep 1;88(9):765–71. doi: 10.1016/j.earlhumdev.2012.04.004

52. Tartar JL, Ward CP, McKenna JT, Thakkar M, Arrigoni E, McCarley RW, et al. Hippocampal synaptic plasticity and spatial learning are impaired in a rat model of sleep fragmentation. European Journal of Neuroscience. 2006 May;23(10):2739–48. doi: 10.1111/j.1460-9568.2006.04808.x

53. Taveggia C, Feltri ML, Wrabetz L. Signals to promote myelin formation and repair. Nature Reviews Neurology. 2010 May 1;6(5):276–87. doi: 10.1038/nrneurol.2010.37

54. Terraneo L, Paroni R, Bianciardi P, Giallongo T, Carelli S, Gorio A, et al. Brain adaptation to hypoxia and hyperoxia in mice. Redox Biology. 2017 Apr;11:12–20. doi: 10.1016/j.redox.2016.10.018

55. Tummala S, Roy B, Park B, Kang DW, Woo MA, Harper RM, et al. Associations between brain white matter integrity and disease severity in obstructive sleep apnea. Journal of Neuroscience Research. 2016 Jun 18;94(10):915–23. doi: 10.1002/jnr.23788

56. Vaes JEG, Vink MA, de Theije CGM, Hoebeek FE, Benders MJNL, Nijboer CHA. The Potential of Stem Cell Therapy to Repair White Matter Injury in Preterm Infants: Lessons Learned From Experimental Models. Frontiers in Physiology. 2019 May 9;10:540. doi: 10.3389/fphys.2019.00540

57. van Tilborg E, de Theije CGM, van Hal M, Wagenaar N, de Vries LS, Benders MJ, et al. Origin and dynamics of oligodendrocytes in the developing brain: Implications for perinatal white matter injury. Glia. 2017 Nov 14;66(2):221–38. doi: 10.1002/glia.23256

58. Vana AC, Flint NC, Harwood NE, Le TQ, Fruttiger M, Armstrong RC. Platelet-Derived Growth Factor Promotes Repair of Chronically Demyelinated White Matter. Journal of Neuropathology & Experimental Neurology. 2007 Nov;66(11):975–88. doi: 10.1097/nen.0b013e3181587d46

59. Wang F, Ren S-Y, Chen J-F, Liu K, Li R-X, Li Z-F, et al. Myelin degeneration and diminished myelin renewal contribute to age-related deficits in memory. Nature Neuroscience. 2020 Apr 1;23(4):481–6. doi: 10.1038/s41593-020-0588-8

60. Wang F, Yang Y-J, Yang N, Chen X-J, Huang N-X, Zhang J, et al. Enhancing Oligodendrocyte Myelination Rescues Synaptic Loss and Improves Functional Recovery after Chronic Hypoxia. Neuron. 2018 Aug;99(4):689-701.e5. doi: 10.1016/j.neuron.2018.07.017

61. Weng Q, Wang J, Wang J, He D, Cheng Z, Zhang F, et al. Single-Cell Transcriptomics Uncovers Glial Progenitor Diversity and Cell Fate Determinants during Development and Gliomagenesis. Cell Stem Cell. 2019 May;24(5):707-723.e8. doi: 10.1016/j.stem.2019.03.006

62. West JB. Physiological Effects of Chronic Hypoxia. Drazen JM, editor. New England Journal of Medicine. 2017 May 18 Jan 24;376(20):1965–71. doi: 10.1056/nejmra1612008

63. Yamazaki Y. Oligodendrocyte Physiology Modulating Axonal Excitability and Nerve Conduction. Advances in Experimental Medicine and Biology. 2019;1190:123–44. doi: 10.1007/978-981-32-9636-7_9

64. Yu Y, Chen Y, Kim B, Wang H, Zhao C, He X, et al. Olig2 Targets Chromatin Remodelers to Enhancers to Initiate Oligodendrocyte Differentiation. Cell. 2013 Jan;152(1-2):248–61. doi: 10.1016/j.cell.2012.12.006

65. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex. The Journal of Neuroscience. 2014 Sep 3;34(36):11929–47. doi: 10.1523/JNEUROSCI.1860-14.2014

66. Zhao C, Dong C, Frah M, Deng Y, Marie C, Zhang F, et al. Dual Requirement of CHD8 for Chromatin Landscape Establishment and Histone Methyltransferase Recruitment to Promote CNS Myelination and Repair. Developmental Cell. 2018 Jun 18;45(6):753-768.e8.. doi: 10.1016/j.devcel.2018.05.022

67. Zheng K, Wang C, Yang J, Huang H, Zhao X, Zhang Z, et al. Molecular and Genetic Evidence for the PDGFRα-Independent Population of Oligodendrocyte Progenitor Cells in the Developing Mouse Brain. The Journal of Neuroscience. 2018 Sep 21;38(44):9505–13. doi: 10.1523/jneurosci.1510-18.2018

68. Zhou Q, Choi G, Anderson DJ. The bHLH Transcription Factor Olig2 Promotes Oligodendrocyte Differentiation in Collaboration with Nkx2.2. Neuron. 2001 Sep;31(5):791–807. doi: 10.1016/S0896-6273(01)00414-7


Рецензия

Для цитирования:


Вихарева Л.В., Новиков Е.И., Новикова Е.С., Маргарян А.В. Полидендроциты – недифференцированные клетки нервной системы. Журнал анатомии и гистопатологии. 2022;11(1):66-73. https://doi.org/10.18499/2225-7357-2022-11-1-66-73

For citation:


Vikhareva L.V., Novikov E.I., Novikova E.S., Margaryan A.V. Polydendrocytes – undifferentiated cells of the nervous system. Journal of Anatomy and Histopathology. 2022;11(1):66-73. (In Russ.) https://doi.org/10.18499/2225-7357-2022-11-1-66-73

Просмотров: 258


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2225-7357 (Print)