Preview

Журнал анатомии и гистопатологии

Расширенный поиск

Макрофаг – центральное звено коммуникационной системы ткани эндометрия

https://doi.org/10.18499/2225-7357-2019-8-4-74-80

Аннотация

Данная работа посвящена клеточной популяции макрофагов в качестве одной из наиболее значимых структур контроля и управления гомеостазом ткани эндометрия, где данные клетки координируют работу клеточных популяций, составляющих коммуникационную систему. Посредством возможности поляризации своего фенотипа макрофаги способны выполнять множество функций, регулируя структурные преобразования эндометрия в зависимости от фазы цикла или возникновения патологии. Высокая концентрация  эстрогена в фолликулярную  фазу является сигналом для макрофагов  эндометрия  к запуску целого ряда событий, затрагивающих все остальные клеточные популяции, в том числе и мезенхимальные стволовые клетки эндометрия. Данные взаимодействия приводят к активации пролиферации фибробластоподобных клеток с последующим их созреванием, а также ангиогенезу и нейрогенезу, что составляет стромальный компонент функционального слоя эндометрия. Особый интерес представляет влияние макрофагов на восполнение железистого компонента функционального слоя эндометрия в процессе железистого ремоделирования, в основе которого лежит эпителиально-мезенхимальный  переход. В фазу секреции макрофаги эндометрия координируют создание клеточного микроокружения для обеспечения толерантности клеток иммунной системы матери к антигенам плода, а также поддержание гомеостаза и роста плаценты. При отсутствии оплодотворения макрофаги активно способствуют разрушению основного вещества ткани эндометрия, что обеспечивает менструальный распад в фазу десквамации. Рассмотрена роль функциональной разбалансировки макрофагов как патогенетического звена целого ряда патологий эндометрия и беременности. Таким образом, показана центральная роль макрофагальной популяции в управлении коммуникационной  системой  ткани эндометрия. Понимание  данных  аспектов  открывает  новые возможности управления менструальным циклом, планированием и сохранением беременности.

Об авторах

Р. В. Украинец
Смоленский государственный медицинский университет Минздрава России
Россия

Украинец Роман Вадимович.

ул. Крупской, 28, Смоленск, 214019.



Ю. С. Корнева
Смоленский государственный медицинский университет Минздрава России
Россия
ул. Крупской, 28, Смоленск, 214019.


А. Е. Доросевич
Смоленский государственный медицинский университет Минздрава России
Россия
ул. Крупской, 28, Смоленск, 214019.


Список литературы

1. Анохин П.К. Философские аспекты теории функциональной системы. М.; 1978. 400

2. Богданов А.А. Тектология: Всеобщая организационная наука. T.1. М.;1989. 304

3. Доросевич А.Е., Голубев О.А., Абросимов С.Ю., Бехтерева И.А. Роль коммуникационных систем в морфогенезе рака молочной железы. Вопросы онкологии.1998; 4: 398–402

4. Доросевич А.Е., Абросимов С.Ю., Голубков М.А. Вегетативные нервные терминали и их клеточное микроокружение – одно из интегрирующих звеньев стромального компонента при дисплазиях и раке молочной железы. Архив патологии.1994; 56(6): 49–53

5. Лямина С.В., Малышев И.Ю. Поляризация макрофагов в современной концепции формирования иммунного ответа. Фундаментальные исследования. 2014; 10-5: 930–5

6. Arcuri F, Cintorino M, Carducci A, Papa S, Riparbelli MG, Mangioni S, et al. Human decidual natural killer cells as a source and target of macrophage migration inhibitory factor. Reproduction. 2006 Jan;131(1):175–82. doi: 10.1530/rep.1.00857

7. Baines MG, Duclos AJ, Antecka E, Haddad EK. Decidual Infiltration and Activation of Macrophages Leads to Early Embryo Loss. American Journal of Reproductive Immunology. 1997 Jun;37(6):471–7. doi: 10.1111/j.1600-0897.1997.tb00262.x

8. Basu S, Eriksson M, Pioli PA, Conejo-Garcia J, Mselle TF, Yamamoto S, et al. ORIGINAL ARTICLE: Human Uterine NK Cells Interact with Uterine Macrophages via NKG2D upon Stimulation with PAMPs. American Journal of Reproductive Immunology. 2008 Dec 11;61(1):52–61. doi: 10.1111/j.1600-0897.2008.00661.x

9. Eyster KM, Hansen KA, Winterton E, Klinkova O, Drappeau D, Mark-Kappeler CJ. Reciprocal Communication Between Endometrial Stromal Cells and Macrophages. Reproductive Sciences. 2010 Jul 2;17(9):809–22. doi: 10.1177/1933719110371854

10. Garry R, Hart R, Karthigasu K, Burke C. Structural changes in endometrial basal glands during menstruation. BJOG: An International Journal of Obstetrics & Gynaecology. 2010 Jun 18;117(10):1175–85. doi: 10.1111/j.1471-0528.2010.02630.x

11. Goldmann O, von Kockritz-Blickwede M, Holtje C, Chhatwal GS, Geffers R, Medina E. Transcriptome Analysis of Murine Macrophages in Response to Infection with Streptococcus pyogenes Reveals an Unusual Activation Program. Infection and Immunity. 2007 May 25;75(8):4148–57. doi: 10.1128/iai.00181-07

12. Lavoie CH, Fraser D, Therriault M-J, Akoum A. Interleukin-1 Stimulates Macrophage Migration Inhibitory Factor Secretion in Ectopic Endometrial Cells of Women with Endometriosis. American Journal of Reproductive Immunology. 2007 Dec;58(6):505–13. doi: 10.1111/j.1600-0897.2007.00471.x

13. Houser BL. Decidual macrophages and their roles at the maternal-fetal interface. Yale J Biol Med. 2012; 85(1): 105–18.

14. Hume DA, Ross IL, Himes SR, Sasmono RT, Wells CA, Ravasi T. The mononuclear phagocyte system revisited. J Leukoc Biol. 2002 Oct;72(4):621–7.

15. Jeziorska M, Nagase H, Salamonsen LA, Woolley DE. Immunolocalization of the matrix metalloproteinases gelatinase B and stromelysin 1 in human endometrium throughout the menstrual cycle. Reproduction. 1996 May 1;107(1):43–51. doi: 10.1530/jrf.0.1070043

16. Jokhi PP, King A, Loke YW. Immunology: Production of granulocyte-macrophage colonystimulating factor by human trophoblast cells and by decidual large granular lymphocytes. Human Reproduction. 1994 Sep;9(9):1660–9. doi: 10.1093/oxfordjournals.humrep.a138769

17. Jones RL, Stoikos C, Findlay JK, Salamonsen LA. TGF-β superfamily expression and actions in the endometrium and placenta. Reproduction. 2006 Aug;132(2):217–32. doi: 10.1530/rep.1.01076

18. Kalkunte S, Chichester CO, Gotsch F, Sentman CL, Romero R, Sharma S. Review article: Evolution of Non-Cytotoxic Uterine Natural Killer Cells. American Journal of Reproductive Immunology. 2008 Apr 9;59(5):425–32. doi: 10.1111/j.1600-0897.2008.00595.x

19. Kamat BR, Isaacson PG. The immunocytochemical distribution of leukocytic subpopulations in human endometrium. Am J Pathol. 1987; 127(1): 66–73.

20. Kao A-P, Wang K-H, Chang C-C, Lee J-N, Long C-Y, Chen H-S, et al. Comparative study of human eutopic and ectopic endometrial mesenchymal stem cells and the development of an in vivo endometriotic invasion model. Fertility and Sterility. 2011 Mar;95(4):1308–15.. doi: 10.1016/j.fertnstert.2010.09.064

21. Khong Y, Tee JH-C, Kelly AJ. Absence of Innervation of the Uteroplacental Arteries in Normal and Abnormal Human Pregnancies. Gynecologic and Obstetric Investigation. 1997;43(2):89–93. doi: 10.1159/000291828

22. King A, Wellings V, Gardner L, Loke YW. Immunocytochemical characterization of the unusual large granular lymphocytes in human endometrium throughout the menstrual cycle. Human Immunology. 1989 Mar;24(3):195–205. doi: 10.1016/0198-8859(89)90060-8

23. Kitaya K, Nakayama T, Okubo T, Kuroboshi H, Fushiki S, Honjo H. Expression of Macrophage Inflammatory Protein-1β in Human Endometrium: Its Role in Endometrial Recruitment of Natural Killer Cells. The Journal of Clinical Endocrinology & Metabolism. 2003 Apr;88(4):1809–14. doi: 10.1210/jc.2002-020980

24. Kitaya K, Yamaguchi T, Honjo H. Central Role of Interleukin-15 in Postovulatory Recruitment of Peripheral Blood CD16(–) Natural Killer Cells into Human Endometrium. The Journal of Clinical Endocrinology & Metabolism. 2005 May;90(5):2932–40. doi: 10.1210/jc.2004-2447

25. Lang R, Patel D, Morris JJ, Rutschman RL, Murray PJ. Shaping Gene Expression in Activated and Resting Primary Macrophages by IL-10. The Journal of Immunology. 2002 Sep 1;169(5):2253–63. doi: 10.4049/jimmunol.169.5.2253

26. Lash GE, Pitman H, Morgan HL, Innes BA, Agwu CN, Bulmer JN. Decidual macrophages: key regulators of vascular remodeling in human pregnancy. Journal of Leukocyte Biology. 2016 Jan 27;100(2):315–25. doi: 10.1189/jlb.1a0815-351r

27. Lea RG, Clark DA. 5 The immune function of the endometrium. Baillière’s Clinical Obstetrics and Gynaecology. 1989 Jun;3(2):293–313. doi: 10.1016/s0950-3552(89)80023-9

28. Lee SK, Kim CJ, Kim D-J, Kang J. Immune Cells in the Female Reproductive Tract. Immune Network. 2015;15(1):16–26. doi: 10.4110/in.2015.15.1.16

29. Li C, Houser BL, Nicotra ML, Strominger JL. HLA-G homodimer-induced cytokine secretion through HLA-G receptors on human decidual macrophages and natural killer cells. Proceedings of the National Academy of Sciences. 2009 Mar 20;106(14):5767–72. doi: 10.1073/pnas.0901173106

30. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology. 2004 Dec;25(12):677–86. doi: 10.1016/j.it.2004.09.015

31. Mantovani A. Macrophage diversity and polarization: in vivo veritas. Blood. 2006 Jul 15;108(2):408–9. doi: 10.1182/blood-2006-05-019430

32. Martinez FO. Macrophage activation and polarization. Frontiers in Bioscience. 2008;13(13):453–461. doi: 10.2741/2692

33. Mei J, Chang K-K, Sun H-X. Immunosuppressive macrophages induced by IDO1 promote the growth of endometrial stromal cells in endometriosis. Molecular Medicine Reports. 2017 Feb 22;15(4):2255–60. doi: 10.3892/mmr.2017.6242

34. Milosevic-Stevanovic J, Krstic M, Radovic- Janosevic D, Popovic J, Tasic M, Stojnev S. Number of decidual natural killer cells & macrophages in pre-eclampsia. Indian Journal of Medical Research. 2016;144(6):823–30. doi: 10.4103/ijmr.ijmr_776_15

35. Nelson PG, Nelson KB. Innervation of the placenta and uterus: Competition between cytotrophoblasts and nerves? Placenta. 2013 Jun;34(6):463–6. doi: 10.1016/j.placenta.2013.03.004

36. Ni N, Gao Y, Fang X, Melgar M, Vincent DF, Lydon JP, et al. Glandular defects in the mouse uterus with sustained activation of TGF-beta signaling is associated with altered differentiation of endometrial stromal cells and formation of stromal compartment. Asselin E, editor. PLOS ONE. 2018 Dec 14;13(12):e0209417. doi: 10.1371/journal.pone.0209417

37. Olkowska-Truchanowicz J, Bocian K, Maksym RB, Bialoszewska A, Wlodarczyk D, Baranowski W, et al. CD4+ CD25+ FOXP3+ regulatory T cells in peripheral blood and peritoneal fluid of patients with endometriosis. Human Reproduction. 2012 Sep 27;28(1):119–24. doi: 10.1093/humrep/des346

38. Padykula HA, Taylor JM. Cellular mechanisms involved in cyclic stromal renewal of the uterus. I. The opossum, didelphis virginiana. The Anatomical Record. 1976 Jan;184(1):5–25. doi: 10.1002/ar.1091840103

39. Padykula HA. Cellular mechanisms involved in cyclic stromal renewal of the uterus. III. Cells of the immune response. The Anatomical Record. 1976 Jan;184(1):49–71. doi: 10.1002/ar.1091840105

40. Pepe G, Locati M, Della Torre S, Mornata F, Cignarella A, Maggi A, et al. The estrogen– macrophage interplay in the homeostasis of the female reproductive tract. Human Reproduction Update. 2018 Sep 19;24(6):652–72. doi: 10.1093/humupd/dmy026

41. Pittatore G, Moggio A, Benedetto C, Bussolati B, Revelli A. Endometrial Adult/Progenitor Stem Cells. Reproductive Sciences. 2013 Sep13;21(3):296–304. doi: 10.1177/1933719113503405

42. Rakhila H, Girard K, Leboeuf M, Lemyre M, Akoum A. Macrophage Migration Inhibitory Factor Is Involved in Ectopic Endometrial Tissue Growth and Peritoneal-Endometrial Tissue Interaction In Vivo: A Plausible Link to Endometriosis Development. Bussolati B, editor. PLoS ONE. 2014 Oct 17;9(10):e110434. doi: 10.1371/journal.pone.0110434

43. Russell P, Sacks G, Tremellen K, Gee A. The distribution of immune cells and macrophages in the endometrium of women with recurrent reproductive failure. III: Further observations and reference ranges. Pathology. 2013 Jun;45(4):393–401. doi: 10.1097/pat.0b013e328361429b

44. Sedlmayr P, Morales P, Trummer S, Wascher K, Azzola D, Blaschitz A, et al. Absence of HLA-G Expression in Macrophages of Human Decidua. American Journal of Reproductive Immunology. 2002 Aug;48(2):96–102. doi: 10.1034/j.1600-0897.2002.01116.x

45. Svensson-Arvelund J, Ernerudh J. The Role of Macrophages in Promoting and Maintaining Homeostasis at the Fetal-Maternal Interface. American Journal of Reproductive Immunology. 2015 Jan 13;74(2):100–9. doi: 10.1111/aji.12357

46. Thiruchelvam U, Dransfield I, Saunders PTK, Critchley HOD. The importance of the macrophage within the human endometrium. Journal of Leukocyte Biology. 2012 Oct 29;93(2):217–25. doi: 10.1189/jlb.0712327

47. Tsai Y-C, Tseng JT, Wang C-Y, Su M-T, Huang J- Y, Kuo P-L. Medroxyprogesterone acetate drives M2 macrophage differentiation toward a phenotype of decidual macrophage. Molecular and Cellular Endocrinology. 2017 Sep;452:74–83. doi: 10.1016/j.mce.2017.05.015

48. Tsao F-Y, Wu M-Y, Chang Y-L, Wu C-T, Ho H-N. M1 macrophages decrease in the deciduae from normal pregnancies but not from spontaneous abortions or unexplained recurrent spontaneous abortions. Journal of the Formosan Medical Association. 2018 Mar;117(3):204–11. doi: 10.1016/j.jfma.2017.03.011

49. Verma S, Hiby SE, Loke YW, King A. Human Decidual Natural Killer Cells Express the Receptor for and Respond to the Cytokine Interleukin 151. Biology of Reproduction. 2000 Apr 1;62(4):959–68. doi: 10.1095/biolreprod62.4.959

50. Wang X-Q, Zhou W-J, Luo X-Z, Tao Y, Li D-J. Synergistic effect of regulatory T cells and proinflammatory cytokines in angiogenesis in the endometriotic milieu. Human Reproduction. 2017 Apr 4;32(6):1304–17. doi: 10.1093/humrep/dex067

51. Wu J, Xie H, Yao S, Liang Y. Macrophage and nerve interaction in endometriosis. Journal of Neuroinflammation. 2017 Mar 14;14(1): 53. doi: 10.1186/s12974-017-0828-3.

52. Xu Y, Romero R, Miller D, Kadam L, Mial TN, Plazyo O, et al. An M1-like Macrophage Polarization in Decidual Tissue during Spontaneous Preterm Labor That Is Attenuated by Rosiglitazone Treatment. The Journal of Immunology. 2016 Feb 17;196(6):2476–91. doi: 10.4049/jimmunol.1502055

53. Zhou W-J, Hou X-X, Wang X-Q, Li D-J. The CCL17-CCR4 axis between endometrial stromal cells and macrophages contributes to the high levels of IL-6 in ectopic milieu. American Journal of Reproductive Immunology. 2017 Feb 27;78(2):e12644. doi: 10.1111/aji.12644


Рецензия

Для цитирования:


Украинец Р.В., Корнева Ю.С., Доросевич А.Е. Макрофаг – центральное звено коммуникационной системы ткани эндометрия. Журнал анатомии и гистопатологии. 2019;8(4):74-80. https://doi.org/10.18499/2225-7357-2019-8-4-74-80

For citation:


Ukrainets R.V., Korneva Yu.S., Dorosevich A.E. Macrophage – the Central Link of the Endometrial Tissue Communication System. Journal of Anatomy and Histopathology. 2019;8(4):74-80. (In Russ.) https://doi.org/10.18499/2225-7357-2019-8-4-74-80

Просмотров: 525


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2225-7357 (Print)