Morphological Manifestations of Human Locomotor Bipedality in Femur
https://doi.org/10.18499/2225-7357-2019-8-1-96-102
Abstract
The aim is to study the structure of the femur of conditionally healthy modern people, as part of the link of the musculoskeletal system, providing bipedal locomotion.
Material and methods. By the original osteometric method was measured 23 structures of 166 femoral bones with full synostosis of epiphysis without evidence of bone pathology. After the introduction of the coefficient of proportionality for linear parameters and the calculation of confidence intervals for each of them, a multilevel factor analysis was carried out, separately for the right and left femoral bones by the maximum likelihood factor analysis method with Equamax normalized rotation.
Results. Four levels of the structural organization, which characterized by asymmetry of factor loadings, are identified. The parameters forming the 1st level ensure the transfer of the mechanical load along the limb axis from the head through the intertrochantcric crest to the medial condyle. 2nd level parameters provide rotational movements at the knee joint. Parameters of the 3rd and 4th levels reflecting the function of the rotation of the leg in the hip joint when upright and maintaining the vertical position of the body in the sagittal plane.
Conclusion. Thus, the human femur is a multilevel system with asymmetric participation of parameters in its formation. Femur, as part of the musculoskeletal system, has a distinct vertical structural differentiation, which is manifested in the dominance of the right limb in the implementation of the support functions at the level of the proximal epiphysis, and motor functions at the level of the distal epiphysis of the femur.
About the Authors
I. N. YashinaRussian Federation
Irina Yashina
Department of Human Anatomy,
ul. Karla Marksa, 3, Kursk, 305004
A. V. Ivanov
Russian Federation
S. V. Klochkova
Russian Federation
References
1. Гайворонский И. В., Хоминец В. В., Удочкина Л. А. Семенов А. А., Гринберг У. В. Корреляции морфометрических параметров мыщелков бедренной и большеберцовой костей. Морфология. 2015; 148(6): 79–83. [Gaivoronskiy IV, Khominets VV, Udochkina LA, Semyonov AA, Grinberg Ye B. Correlation of morphometric parameters in the structure of the femoral and tibial condyles. Morfologiia. 2015;148(6):79–83] (in Russian).
2. Гафаров Х. З. Какова же величина торсии бедренной кости и какое значение она имеет в клинике? Практическая медицина. 2013; 2(1–2): 37–44 [Gapharov KhZ. Size of torsional transformation of a femur and its significance in treatment. Practical medicine. 2013;2(1–2):37–41] (in Russian).
3. Гелашвили П. А., Юхимец С. Н., Буракова Е. Н. Морфометрическая характеристика проксимального эпифиза бедренной кости человека различных возрастных периодов. Морфологические ведомости. 2008; 1–2: 146–147 [Gelashvili PA, Yukhimets SN, Burakova EN. The morphometrical characteristic of the human femur proximal epiphysis in various age seasons. Morphological Newsletter. 2008;1–2:146–147] (in Russian).
4. Довгялло Ю. В. Индивидуальная изменчивость бедренной кости. Знание. 2016; 2–3(31): 71–74 [Dowgiallo YuV. Individual variability of the femur. Znanie. 2016; 2–3(31):71–74] (in Russian).
5. Николенко В. Н., Фомичева О. А., Жмурко Р. С., Яковлев Н. М., Бессонова О. С., Павлов С. В. Индивидуально-типологические особенности морфогеометрии проксимального отдела бедренной кости. Саратовский научномедицинский журнал. 2010; 6(1): 36–39 [Nikolenko VN, Fomicheva OA, Zhmurko RS, Yakovlev NM, Bessonova OS, Pavlov SV. Individual and typological morphogeometric features of the proximal of femoral bone. Saratov Journal of Medical Scientific Research. 2010; 6(1): 36–39] (in Russian).
6. Скворцов Д. В. Клинический анализ движений, стабилометрия. М.: Антидор; 2000. 199. [Skvortsov D. Klinicheskii analiz dvizhenii, stabilometriya. Moscow; 2000] (in Russian).
7. Тур С. С. Билатеральная асимметрия длинных костей конечностей у скотоводов Алтая эпохи Бронзы и раннего Железного века. Археология, этнография и антропология Евразии . 2014; 59(3):141–156 [Tur S.S. Bilateral asymmetry of long bones in Bronze and early Iron age pastoralists of the Altai. Archaeology, Ethnology & Anthropology of Eurasia. 2014; 59(3):141–156] (in Russian).
8. Хайруллин Р. М. Эффективность индексов флуктуирующей асимметрии для оценки морфологических признаков человека. Морфологические ведомости. 2002; 1–2: 52–54. [Khairullin RM. The efficiency of fluctuating asymmetry quantitative indexes for measurement of the human morphological parameters. Morphological Newsletter. 2002;1–2:52–54] (in Russian).
9. Arley CT, Ferris DP. 10 Biomechanics of Walking and Running. Exercise and Sport Sciences Reviews. 1998;26:253–286. doi: 10.1249/00003677-199800260
10. Auerbach BM, Ruff CB. Limb bone bilateral asymmetry: variability and commonality among modern humans. Journal of Human Evolution. 2006 Feb;50(2):203–18. doi: 10.1016/j.jhevol.2005.09.004
11. Johnson AP. Biomechanics and exercise physiology. New York: John Wiley & Sons. 1991.
12. Oba M, Inaba Y, Kobayashi N, Ike H, Tezuka T, Saito T. Effect of femoral canal shape on mechanical stress distribution and adaptive bone remodelling around a cementless tapered-wedge stem. Bone & Joint Research. 2016 Sep;5(9):362–9. doi: 10.1302/2046-3758.59.2000525
13. Witte H, Preuschoft H, Recknagel S. Human body proportions explained on the basis of biomechanical principles. Zeitschrift fur Morphologie und Anthropologie. 1991;79(3):407–23.
14. Zajac FE, Neptune RR, Kautz SA. Biomechanics and muscle coordination of human walking. Gait & Posture. 2002 Dec;16(3):215–32. doi: 10.1016/s0966-6362(02)00068-1
Review
For citations:
Yashina I.N., Ivanov A.V., Klochkova S.V. Morphological Manifestations of Human Locomotor Bipedality in Femur. Journal of Anatomy and Histopathology. 2019;8(1):96-102. (In Russ.) https://doi.org/10.18499/2225-7357-2019-8-1-96-102