Morphofunctional Transformations in the Lungs of Rats Under the Long-Term Exposure to Sodium Tetraborate
https://doi.org/10.18499/2225-7357-2019-8-1-25-30
Abstract
The aim of the study was to identify reactive and adaptive changes in the lungs of rats under the longterm exposure to sodium tetraborate.
Material and methods. The study included male rats which were administered sodium tetraborate in dosage of 1/30 LD50, intraperitoneally, daily. The study samples (lung fragments) were selected for histological examination in 7, 14, 21 and 30 days from the beginning of the experiment.
Results. Long-term exposure to sodium tetraborate resulted in a complex of destructive changes in the air-conducting and respiratory parts of the lung. Leukocyte infiltration in the connective tissue and epithelium of the bronchial and alveoli wall, focal destruction of the bronchial epithelium and alveoli, growth of the connective tissue in the organ interstitial were observed with underlying edema, stasis of blood corpuscles in capillaries, focal destruction of the capillary wall. The study revealed alveolocyte wall thickening and growth and sclerosing of the connective tissue in the interalveolar spaces; this appears to be the morphological equivalent of the increased thickness of the aero-hematic barrier and deterioration of the gas exchange in the alveoli. The increased proportion of the bronchi-associated lymphoid tissue mainly presented by the lymphoid tissue of the diffuse character and less rarely by the lymphoid follicles was registered in the wall of the medium bronchi.
Conclusion. The results have proven the negative impact of sodium tetraborate on lung structures and demonstrated the adaptive capacity of the lungs, their ability to maintain the necessary structural-functional characteristics under the extreme destabilizing factors effect.
About the Authors
A. E. AkhaevaRussian Federation
T. Zh. Umbetov
Russian Federation
R. E. Egemberdieva
Russian Federation
N. N. Shevlyuk
Russian Federation
Nikolai Shevlyuk
Department of Histology, Cytology and Embryology,
ul. Sovetskaya, 6, Orenburg, 460000
References
1. Вахитов Э. М., Лабутин И. В., Козлова А. Н., Безносик Р. В. Морфофункциональная характеристика воздухоносных путей и респираторного отдела легкого крысы в условиях интраназального инфицирования с позиций нейроэндокринной регуляции репаративных гистогенезов. Морфология. 2013; 144(5): 35–39 [Vahitov J, Labutin I, Kozlova A, Beznosik R. Morpho-functional characteristics of conducting airways and the respiratory portion of rat lung under the conditions of intratracheal infection from the positions of the neuroendocrine regulation of reparative histogeneses. Morphology. 2013;144(5):35–9] (in Russian).
2. Гармаева Д. К. Морфологическая характеристика лимфоидных скоплений в стенках бронхов в легких крыс в норме. Морфологические ведомости. 2005; 3–4: 9–12 [Garmaeva D. Morphological description of bronchi lungs lymphoid accumulations of the rat in norm. Morphological Newslette. 2005;(3–4):9–12.] (in Russian).
3. Козлова А. Н. Изменение эпителия воздухоносных путей у крыс, инфицированных на фоне длительного эмоционально-болевого стресса и влияние на них окситоцина. Морфология. 2008; 134(5): 33–36 [Kozlova A. Changes of the respiratory tract epithelium of the rats infected after the exposure to a prolonged emotional-painful stress: effect of oxytocin. Morphology. 2008;134(5):33–6] (in Russian).
4. Bienenstock J, McDermott MR. Bronchus- and nasal-associated lymphoid tissues. Immunological Reviews. 2005 Aug;206(1):22–31. doi: 10.1111/j.0105-2896.2005.00299.x
5. Bustos-Obregón E, Hartley Belmar R, CatriaoGálvez R. Histopathological Effects of Boron on Mouse Liver. International Journal of Morphology. 2008 Mar;26(1). doi: 10.4067/s0717-95022008000100026
6. Devirian TA, Volpe SL. The Physiological Effects of Dietary Boron. Critical Reviews in Food Science and Nutrition. 2003 Mar;43(2):219–31. doi: 10.1080/10408690390826491
7. Goldbach HE, Wimmer MA. Boron in plants and animals: Is there a role beyond cell-wall structure? Journal of Plant Nutrition and Soil Science. 2007 Feb;170(1):39–48. doi: 10.1002/jpln.200625161
8. Hu Q, Li S, Qiao E, Tang Z, Jin E, Jin G, et al. Effects of Boron on Structure and Antioxidative Activities of Spleen in Rats. Biological Trace Element Research. 2014 Feb 5;158(1):73–80. doi: 10.1007/s12011-014-9899-5
9. Jin E, Gu Y, Wang J, Jin G, Li S. Effect of Supplementation of Drinking Water with Different Levels of Boron on Performance and Immune Organ Parameters of Broilers. Italian Journal of Animal Science. 2014 Jan;13(2):3152. doi: 10.4081/ijas.2014.3152
10. Kabu M, Tosun M, Elitok B, Akosman MS. Histological Evaluation of the Effects of Borax Obtained from Various Sources in Different Rat Organs. International Journal of Morphology. 2015 Mar;33(1):255–61. doi: 10.4067/s0717-95022015000100040
11. Kot FS. Boron sources, speciation and its potential impact on health. Reviews in Environmental Science and Bio/Technology. 2008 Aug 15;8(1):3–28. doi: 10.1007/s11157-008-9140-0
12. Ku WW, Chapin RE. Mechanism of the Testicular Toxicity of Boric Acid in Rats: In Vivo and In Vitro Studies. Environmental Health Perspectives. 1994 Nov;102:99–105. doi: 10.2307/3431971
13. Mahabir S, Spitz MR, Barrera SL, Dong YQ, Eastham C, Forman MR. Dietary Boron and Hormone Replacement Therapy as Risk Factors for Lung Cancer in Women. American Journal of Epidemiology. 2008 Feb 27;167(9):1070–80. doi: 10.1093/aje/kwn021
14. Nielsen FH. Update on human health effects of boron. Journal of Trace Elements in Medicine and Biology. 2014 Oct;28(4):383–7. doi: 10.1016/j.jtemb.2014.06.023
15. Ozen A, Canbek M. Apoptosis induced by boric anhydrite (B2O3) after partial hepatectomy in rat liver. Bratislava Medical Journal. 2016;116(04):231–4. doi: 10.4149/bll_2016_044
16. Rosenbruch M. Inhalation of amorphous silica: morphological and morphometric evaluation of lung associated lymph nodes in rats. Experimental and Toxicologic Pathology. 1992 Mar;44(1):10–4. doi: 10.1016/s0940-2993(11)80130-2
17. Tam A, Wadsworth S, Dorscheid D, Man SFP, Sin DD. The airway epithelium: more than just a structural barrier. Therapeutic Advances in Respiratory Disease. 2011 Mar 3;5(4):255–73. doi: 10.1177/1753465810396539
18. Uluisik I, Karakaya HC, Koc A. The importance of boron in biological systems. Journal of Trace Elements in Medicine and Biology. 2018 Jan;45:156–62. doi: 10.1016/j.jtemb.2017.10.008
19. Zafar H, Ali S. Boron inhibits the proliferating cell nuclear antigen index, molybdenum containing proteins and ameliorates oxidative stress in hepatocellular carcinoma. Archives of Biochemistry and Biophysics. 2013 Jan;529(2):66–74. doi: 10.1016/j.abb.2012.11.00
Review
For citations:
Akhaeva A.E., Umbetov T.Zh., Egemberdieva R.E., Shevlyuk N.N. Morphofunctional Transformations in the Lungs of Rats Under the Long-Term Exposure to Sodium Tetraborate. Journal of Anatomy and Histopathology. 2019;8(1):25-30. (In Russ.) https://doi.org/10.18499/2225-7357-2019-8-1-25-30