Preview

Journal of Anatomy and Histopathology

Advanced search

Analysis of phagocytic activity of macrophages of monocytic origin and Kupfer cells

https://doi.org/10.18499/2225-7357-2018-7-3-13-19

Abstract

The purpose of the study was to compare the phagocytic activity of macrophages of monocytic origin both without activation and under the influence of factors of the M1 and M2 phenotype. Material and methods. Peripheral blood monocytes and Kupper liver cells of male Wistar rats were obtained by gradient centrifugation. The Kupffer cells and rat monocytes were transferred to RPMI growth medium. To activate in the direction of the M1-phenotype, LPS and IFN-γ were introduced into the medium. To activate the M2 phenotype, IL 4, IL10, and IL 13 were added to the medium. The obtained macrophage cultures were stained with antibodies to CD68. To study the phagocytic activity of macrophages, the cells were placed on plates for intravital microscopy and latex beads were added to the culture medium. Results. The macrophage cultures of monocytic origin and Kupffer cells expressed CD68 at a high level, the addition of activation factors did not change the expression of the marker. 1 hour after the addition of latex particles to the culture medium, unactivated monocytic macrophages statistically significantly absorbed particles more than Kupffer cells. Activation by factors of the M1 and M2 phenotype led to an increase in the phagocytic activity of both macrophages of monocytic origin and Kupffer cells. The most activating effect on phagocytic activity was provided by induction factors of the M1 phenotype. Conclusions. For macrophages of monocytic origin and Kupffer cells, a different dynamics of phagocytic activity is characteristic. Monocytic macrophages initially have a more pronounced absorption capacity, which gradually increases during the experiment. For Kupffer cells, a sharp fluctuation of phagocytic activity is characteristic: rapid growth and rapid saturation.

About the Authors

A. V. El'chaninov
The Peoples' Friendship University of Russia, Moscow, Russia
Russian Federation


A. V. Lokhonina
The Peoples' Friendship University of Russia, Moscow, Russia
Russian Federation


A. V. Makarov
Pirogov Russian National Research Medical University, Moscow, Russia
Russian Federation


I. V. Arutyunyan
Research Institute of Human Morphology, Moscow, Russia
Russian Federation


M. V. Grinberg
The Peoples' Friendship University of Russia, Moscow, Russia
Russian Federation


G. A. Ladygina
Pirogov Russian National Research Medical University, Moscow, Russia
Russian Federation


L. A. Knyazeva
Pirogov Russian National Research Medical University, Moscow, Russia
Russian Federation


G. B. Bol'shakova
Research Institute of Human Morphology, Moscow, Russia
Russian Federation


T. Kh. Fatkhudinov
The Peoples' Friendship University of Russia, Moscow, Russia
Russian Federation


References

1. Ельчанинов А. В., Фатхудинов Т. Х., Усман Н. Ю., Макаров А. В., Арутюнян И. В., Кананыхина Е. Ю., Большакова Г. Б., Гольдштейн Д. В., Сухих Г. Т. Динамика количества М2 макрофагов при регенерации печени крыс. Молекулярная медицина. 2017; 15(1): 45-50.

2. Лохонина А. В., Покусаев А. С., Арутюнян И. В., Ельчанинов А. В., Макаров А. В., Еремина И. З., Суровцев В. В., Большакова Г. Б., Гольдштейн Д. В., Фатхудинов Т. Х. Характеристика иммунофенотипа резидентных макрофагов печени и профиля экспрессируемых генов. Клиническая и экспериментальная морфология. 2018; 1(25): 49-60.

3. Bilzer M., Roggel F., Gerbes A. L. Role of Kupffer cells in host defense and liver disease Role of Kupffer cells in host defense and liver disease. Liver International. 2006; 26: 1175-1186.

4. Chazaud B. Macrophages: supportive cells for tissue repair and regeneration. Immunobiology. 2014; 219(3): 172-178.

5. Elchaninov A. V., Fatkhudinov T. Kh., Usman N. Y., Kananykhina E. Y., Arutyunyan I. V., Makarov A. V., Lokhonina A. V., Eremina I. Z., Surovtsev V. V., Goldshtein D. V., Bolshakova G. B., Glinkina V. V., Sukhikh G. T. Dynamics of macrophage populations of the liver after subtotal hepatectomy in rats. BMC Immunology. 2018; 19(1): 23.

6. Furth van R., Cohn Z. A., Hirsch J. G., Humphrey J. H., Spector W. G., Langevoort H. L. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ. 1972; 46(6): 845-852.

7. Gottfried E., Kunz-Schughart L. A., Weber A., Rehli M., Peuker A., Müller A., Kastenberger M., Brockhoff G., Andreesen R., Kreutz M. Expression of CD68 in non-myeloid cell types. Scand J Immunol. 2008; 67(5): 453-463.

8. Holness C. L., da Silva R. P., Fawcett J., Gordon S., Simmons D. L. Macrosialin, a mouse macrophage-restricted glycoprotein, is a member of the lamp⁄lgp family. J Biol Chem. 1993; 268(13): 9661-9666.

9. Holness C. L., Simmons D. L. Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Blood. 1993; 81(6): 1607-1613.

10. Kurushima H., Ramprasad M., Kondratenko N., Foster D. M., Quehenberger O., Steinberg D. Surface expression and rapid internalization of macrosialin (mouse CD68) on elicited mouse peritoneal macrophages. J LeukocBiol 2000; 67(1): 104-108.

11. La Rocca G., Anzalone R., Farina F. The expression of CD68 in human umbilical cord mesenchymal stem cells: new evidences of presence in non-myeloid cell types. Scand J Immunol. 2009; 70(2): 161-162.

12. Li P., He K., Li J., Liu Z., Gong J. The role of Kupffer cells in hepatic diseases. Mol Immunol. 2017; 85: 222-229.

13. Michalopoulos G. K. Advances in liver regeneration. Expert. Rev. Gastroenterol. Hepatol. 2014; 8(8): 897-907.

14. Perdiguero E. G., Geissmann F. The development and maintenance of resident macrophages. Nat Immunol. 2016; 17(1): 2-8.

15. Perdiguero G. E., Klapproth K., Schulz C., Busch K., Azzoni E., Crozet L., Garner H., Trouillet C., de Bruijn M. F., Geissmann F., Rodewald H. R. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 2015; 518(7540): 547-551.

16. Saito N., Pulford K. A., Breton-Gorius J., Masse J. M., Mason D. Y., Cramer E. M. Ultrastructural localization of the CD68 macrophage-associated antigen in human blood neutrophils and monocytes. Am J Pathol. 1991; 139(5): 1053-1059.

17. You Q., Holt M, Yin H, Li G, Hu C. J., Ju C. Role of hepatic resident and infiltrating macrophages in liver repair after acute injury. Biochem. Pharmacol. 2013; 86(6): 836-843.

18. Zeng W. Q., Zhang J. Q., Li Y., Yang K., Chen Y. P., Liu Z. J. A new method to isolate and culture rat kupffer cells. PLoS One. 2013; 8(8): e70832.

19. Zhang Q., Qu Y., Li Z., Zhang Q., Xu M., Cai X., Li F., Lu L. Isolation and Culture of Single Cell Types from Rat Liver. Cells Tissues Organs. 2016; 201(4): 253-267.


Review

For citations:


El'chaninov A.V., Lokhonina A.V., Makarov A.V., Arutyunyan I.V., Grinberg M.V., Ladygina G.A., Knyazeva L.A., Bol'shakova G.B., Fatkhudinov T.Kh. Analysis of phagocytic activity of macrophages of monocytic origin and Kupfer cells. Journal of Anatomy and Histopathology. 2018;7(3):13-19. (In Russ.) https://doi.org/10.18499/2225-7357-2018-7-3-13-19

Views: 940


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2225-7357 (Print)