Preview

Journal of Anatomy and Histopathology

Advanced search

Age-Related Features of GFAP and DCX Expression in Rats’ Olfactory Bulbs and Rostral Migratory Stream

https://doi.org/10.18499/2225-7357-2018-7-2-69-75

Abstract

The aim of the study was to establish the normative parameters of the astrocytes’ and neuroblasts’ distribution in the rostral migratory stream and in different layers of the rats’ olfactory bulbs in the evolutionary period by the positivity of the specific GFAP and DCX markers and to identify possible correlations between the GFAP and DCX expression levels. Material and methods. The olfactory bulbs of twenty male Wistar rats of 30-, 60-, 90-, 180-day-old age were used as the study material. These groups correspond to the infantile, juvenile and mature ages. The distribution of GFAP, a marker of astrocytes and DCX, a marker of immature neurons, in olfactory bulbs and a rostral migratory stream were investigated. These markers were detected on the parasagittal sections with distribution for olfactory bulb layers. The numerical density of GFAP+ astrocytes (cell/mm2), the area of their processes’ distribution, the bodies’ average sizes and the numerical density of DCX+ neurons (cell/mm2) were determined. Results. As a result age-related normative characteristics of astrocyte density, median distribution of their processes and numerical density of immature neurons were established. Correlations between expression of DCX and GFAP in rostral stream and granular layer of olfactory bulb were recognized. According to the received data the peak of postnatal neurogenesis intensity occurs at the juvenile age (60-90 days). The numerical density of neuroblasts depends on the layer of the bulb and the age of the animal. The numerical density of astrocytes also has topographic and age features, the area of distribution of the processes of astrocytes varies in opposition to their numerical density. The results obtained are the basis for assessing the response of glia and stem niches to different types of effects.

About the Authors

T. A. Rumyantseva
Yaroslavl State Mmedical Uuniversity, Yaroslavl, Russia
Russian Federation


D. A. Pozhilov
Yaroslavl State Mmedical Uuniversity, Yaroslavl, Russia
Russian Federation


V. E. Varentsov
Yaroslavl State Mmedical Uuniversity, Yaroslavl, Russia
Russian Federation


A. V. Moskalenko
Yaroslavl State Mmedical Uuniversity, Yaroslavl, Russia
Russian Federation


References

1. Варенцов В. Е., Румянцева Т. А. Возрастные особенности экспрессии даблкортина в структурах обонятельных луковиц крысы. Журнал анатомии и гистопатологии. 2017; 6 (3): 19-24.

2. Гомазков О. А. Нейрогенез как адаптивная функция мозга. М.; 2014. 85.

3. Западнюк И. П., Западнюк В. И., Захария Е. А., Западнюк Б. В. Лабораторные животные. Разведение, содержание, использование в эксперименте. Киев: Вища школа; 1983. 383.

4. Коржевский Д. Э. Изучение пространственной организации астроцитов головного мозга при помощи конфокальной лазерной микроскопии. Морфология. 2009; 135 (3): 76-79.

5. Коржевский Д. Э., Отеллин В. А. Иммуноцитохимическое выявление астроцитов в срезах головного мозга в сочетании с окраской по Нисслю. Морфология. 2004; 125 (3): 100-102.

6. Abbott N. J. Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol. 2005; 25: 5-23.

7. Balu D. T. Adult hippocampal neurogenesis: regulation, functional implications, and contribution to disease pathology. NeurosciBiobehav. Rev. 2009; 33 (3): 232-252.

8. Bushong E. A. Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int J Dev Neurosci. 2004; 22: 73- 86.

9. García-Marqués J., López-Mascaraque L. Clonal Mapping of Astrocytes in the Olfactory Bulb and Rostral Migratory Stream. Cerebral Cortex. 2016; March 21: 1-15.

10. Guide for the Care and Use of Laboratory Animals: Eighth Edition. The National Academies Press. Washington, DC; 2011. 248.

11. Jung H. C. Comparison of Newly Generated Doublecortin-immunoreactive Neuronal Progenitors in the Main Olfactory Bulb among Variously Aged Gerbils. Published online: Springer Science Business Media. 2010. https://link.springer.com/article/10.1007%2Fs11064-010-0220-5

12. Louis S. A. Enumeration of neural stem and progenitor cells in the neural colony-forming cell assay. Stem Cells. 2008; 26 (4): 988-996.

13. Lucassen P. J. Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: Implications for depression and antidepressant action. Eur Neuropsychopharmacol. 2010; 20 (1): 1-17.

14. Royet J.-P. A re-estimation of the number of glomeruli and mitral cells in the olfactory bulb. Brain Research. 1998; 788: 35-42

15. Wille M. The proteome profiles of the olfactory bulb of juvenile, adult and aged rats - an ontogenetic study. Proteome Science. 2015; 13: 8.


Review

For citations:


Rumyantseva T.A., Pozhilov D.A., Varentsov V.E., Moskalenko A.V. Age-Related Features of GFAP and DCX Expression in Rats’ Olfactory Bulbs and Rostral Migratory Stream. Journal of Anatomy and Histopathology. 2018;7(2):69-75. (In Russ.) https://doi.org/10.18499/2225-7357-2018-7-2-69-75

Views: 637


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2225-7357 (Print)