Preview

Journal of Anatomy and Histopathology

Advanced search

Comparative characteristics of the white rats neocortex, hippocampus and amygdale complex synaptoarchitectonics in norm and after acute ischemia

https://doi.org/10.18499/2225-7357-2017-6-4-47-54

Abstract

The aim of this study was to interneuronal synapses and mitochondria somatosensory cortex (SSC), CA1 of the hippocampus and the central nucleus of the amygdaloid complex (MC) of the brain of albino rats (n=35) after a 20-minute bilateral occlusion of common carotid arteries. Material and methods. Used electron microscopy, morphometric and statistical methods. Ultrathin sections were contrasted by uranyl acetate and analyzed by lead citrate, and phosphonoformate acid. Results. After 3 days after ischemia the total number density of contacts (TNDC) in the SSC declined by 55.2, CA1 hippocampus - 44.8, and MC - 26.7%. The restoration of TNDC in SSC and CA1 of the hippocampus to control levels occurred in 21 and 30 days, and in MC - in 14 days. Deficit TNDC in the postischemic period depended on the number of synapses and square slices of mitochondria per unit field of view in the studied parts of the brain to ischemia (norm). Conclusions. The smaller the number of synapses and the larger the area of mitochondria in normal, the less damaged synapses after ischemia.

About the Author

A. S. Stepanov
Omsk State Medical University, Omsk, Russia
Russian Federation


References

1. Боровиков В. П. Statistica. Искусство анализа данных на компьютере. СПб.: Питер; 2003. 688.

2. Семченко В. В., Степанов С. С., Боголепов Н. Н. Синаптическая пластичность головного мозга (фундаментальные и прикладные аспекты). М.; 2014. 408.

3. Baron J-C., Yamauchi H., Fujioka M., Endres M. Selective neuronal loss in ischemic stroke and cerebrovascular disease. J. Cereb. Blood Flow. Metab. 2014; 34: 2-18.

4. Clare R., King V. G., Wirenfeldt M., Vinters H. V. Synapse loss in dementias. J. Neurosci. Res. 2010; 88 (10): 2083-2090.

5. Hossmann K. A. Cerebral ischemia: models, methods and outcomes. Neuropharmacol. 2008; 55: 257-270.

6. Kroemer G., Galluzzi L., Vandenabeele P., Abrams J. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ. 2009; 16: 3-10.

7. Martin L. J. Biology of mitochondria in neurodegenerative diseases. Prog. Mol. Biol. Transl. Sci. 2012; 107: 355-415.

8. Maurer L. L. The mechanisms of neurotoxicity and the selective vulnerability of nervous system sites. Handb. Clin. Neurol. 2015; 131: 61-70.

9. Merino J. G. Imaging of acute stroke. Nat. Rev. Neurol. 2010; 6: 560-571.

10. Paxinos G. The Rat Brain in Stereotaxic Coordinates. 5-th ed. Elsevier Academic Press, SD, CA; 2005. 367.

11. Plesnila N. Role of mitochondrial proteins for neuronal cell death after focal cerebral ischemia. Acta Neurochir. Suppl. 2004; 89: 15-19.

12. Rugarli E. I. Mitochondrial quality control: a matter of life and death for neurons. J. EMBO. 2012; 31 (6): 1336-1349.

13. Zille M., Farr T. D., Przesdzing I. et al. Visualizing cell death in experimental focal cerebral ischemia: promises, problems, and perspectives. J. Cereb. Blood Flow. Metab. 2012; 32: 213-231.


Review

For citations:


Stepanov A.S. Comparative characteristics of the white rats neocortex, hippocampus and amygdale complex synaptoarchitectonics in norm and after acute ischemia. Journal of Anatomy and Histopathology. 2017;6(4):47-54. (In Russ.) https://doi.org/10.18499/2225-7357-2017-6-4-47-54

Views: 351


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2225-7357 (Print)