Preview

Journal of Anatomy and Histopathology

Advanced search

Directions of allogeneic multipotent stromal cells differentiation in the regenerating liver

https://doi.org/10.18499/2225-7357-2017-6-4-15-20

Abstract

The aim of the study was to study the replacement mechanism of the therapeutic activity of umbilical multipotent stromal cells in a model of liver regeneration after subtotal resection in rats. Material and methods. The work was performed on rats of outbred Sprayg-Dowley rats, which reproduced the model of liver regeneration after subtotal resection - removal of 80% of the liver mass. Cell cultures were obtained from rat umbilical cord intervascular tissue by explant culture. Their identity as multipotent stromal cells was confirmed by observations of characteristic morphology, adhesive properties, robust clonogenic growth on untreated plastic, specific surface antigen expression profile, and differentiation capacities to the osteogenic, chondrogenic and adipogenic phenotype. The multipotent stromal cells of the third passage were labeled with PKH26 transplanted into the regenerating liver during liver subtotal resection. Differentiation of the transplanted cells was subsequently evaluated with fluorescence. Results. Multipotent stromal cells differentiation was assessed with antibodies to hepatocyte-specific marker cytokeratin 18 (CK18), cholangiocyte-specific protein CK19, smooth muscle cell-specific protein α-SMA, the endothelial cell marker CD31, or the active fibroblast marker FAPα. It was shown that the injected cells did not express the hepatocyte marker - cytokeratin 18, cholangiocyte marker - cytokeratin 19, as well as smooth muscle cells - alpha smooth muscle actin, single cells expressed endothelial cells marker - CD31. Conclusions. Thus, the differentiation of multipotent stromal cells is not the leading mechanism of cell activity in conditions of liver regeneration after subtotal resection.

About the Authors

A. V. El'chaninov
V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russia
Russian Federation


T. Kh. Fatkhudinov
V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russia
Russian Federation


I. V. Arutyunyan
V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russia; Research Institute of Human Morphology, Moscow, Russia
Russian Federation


A. V. Makarov
V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
Russian Federation


A. V. Lokhonina
V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russia; The Peoples' Friendship University of Russia, Moscow, Russia
Russian Federation


I. Z. Eremina
The Peoples' Friendship University of Russia, Moscow, Russia
Russian Federation


I. A. Bicherova
Pirogov Russian National Research Medical University, Moscow, Russia
Russian Federation


G. B. Bol'shakova
Research Institute of Human Morphology, Moscow, Russia
Russian Federation


References

1. Ельчанинов А. В., Володина М. А., Арутюнян И. В. и др. Влияние мультипотентных стромальных клеток на функцию митохондрий клеток регенерирующей печени. Клеточные технологии в биологии и медицине. 2014; 4: 253-259.

2. Котельникова Л. П., Будянская И. М. Профилактика и лечение осложнений после резекции печени. Вестник хирургии им. И.И. Грекова. 2012; 3(171): 67-71.

3. Arutyunyan I., Elchaninov A., Fatkhudinov T., et al. Elimination of allogeneic multipotent stromal cells by host macrophages in different models of regeneration. Int. J. Clin. Exp. Pathol. 2015; 8(5): 4469-80.

4. Ayatollahi M., Hesami Z., Jamshidzadeh A., Gramizadeh B. Antioxidant Effects of Bone Marrow Mesenchymal Stem Cell against Carbon Tetrachloride-Induced Oxidative Damage in Rat Livers. Int J Organ Transplant. Med. 2014;5(4):166-73.

5. Bae S., Park C. W., Son H. K. et al. Fibroblast activation protein alpha identifies mesenchymal stromal cells from human bone marrow. Br. J. Haematol. 2008;142(5):827-30.

6. Dahm F., Georgiev P., Clavien P. A. Small-for-size syndrome after partial liver transplantation: definition, mechanisms of disease and clinical implications. Am. J. Transplant. 2005; 5(11): 2605-10.

7. Darby I. A., Laverdet B., Bonté F., Desmoulière A. Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Investig Dermatol. 2014; 7: 301-11. doi: 10.2147/CCID.S50046.

8. De Leve L. D. Liver sinusoidal endothelial cells and liver regeneration. J. Clin. Invest. 2013; 123(5): 1861-6.

9. di Bonzo L. V., Ferrero I., Cravanzola C., et al. Human mesenchymal stem cells as a two-edged sword in hepatic regenerative medicine: engraftment and hepatocyte differentiation versus profibrogenic potential. Gut. 2008; 57(2): 223-31.

10. Dominici M., Le Blanc K., Mueller I., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8(4): 315-7.

11. Driskell R. R., Watt F. M. Understanding fibroblast heterogeneity in the skin. Trends Cell Biol. 2015; 25(2): 92-9. doi: 10.1016/j.tcb.2014.10.001

12. Hammond J. S., Guha I. N., Beckingham I. J., Lobo D. N. Prediction, prevention and management of postresection liver failure. Br. J. Surg. 2011; 98(9):1188-200. doi: 10.1002/bjs.7630.

13. Kelly T., Huang Y., Simms A. E. et al. Fibroblast activation protein-α: a key modulator of the microenvironment in multiple pathologies. Int. Rev. Cell Mol. Biol. 2012; 297: 83-116.

14. Michalopoulos G. K. Liver regeneration. J. Cell. Physiol. 2007; 213(2): 286-300.

15. Pacini S., Petrini I. Are MSCs angiogenic cells? New insights on human nestin-positive bone marrow-derived multipotent cells. Front. Cell. Dev. Biol. 2014; 2(20).

16. Vittorio O., Jacchetti E., Pacini S. et al. Endothelial differentiation of mesenchymal stromal cells: when traditional biology meets mechanotransduction. Integr Biol (Camb). 2013; 5(2): 291-9.

17. Wang H., Zhao T., Xu F., et al. How important is differentiation in the therapeutic effect of mesenchymal stromal cells in liver disease? Cytotherapy. 2013; 0: 1e10

18. Watt S. M., Gullo F., van der Garde M., et. al. The angiogenic properties of mesenchymal stem/stromal cells and their therapeutic potential. Br. Med. Bull. 108, 25-53. doi:10.1093/bmb/ldt031

19. Wu X. B., Tao R., Li D.-L. et al. Hepatobiliary Pancreat Dis Int. 2012 Aug 15;11(4):360-71. Hepatocyte differentiation of mesenchymal stem cells. Pathobiology. 2013; 80: 228-234.

20. Yin L., Zhu Y., Yang J., et al. Adipose tissue-derived mesenchymal stem cells differentiated into hepatocyte like cells in vivo and in vitro. Mol. Med. Rep. 2014. doi: 10.3892/mmr.2014.2935.


Review

For citations:


El'chaninov A.V., Fatkhudinov T.Kh., Arutyunyan I.V., Makarov A.V., Lokhonina A.V., Eremina I.Z., Bicherova I.A., Bol'shakova G.B. Directions of allogeneic multipotent stromal cells differentiation in the regenerating liver. Journal of Anatomy and Histopathology. 2017;6(4):15-20. (In Russ.) https://doi.org/10.18499/2225-7357-2017-6-4-15-20

Views: 462


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2225-7357 (Print)