Preview

Journal of Anatomy and Histopathology

Advanced search

Morphological Changes in the Femur in Experimental Osteomyelitis in Rabbits

https://doi.org/10.18499/2225-7357-2025-14-4-34-46

Abstract

This article is devoted to the study of the dynamics of histological changes in experimental osteomyelitis of the femur in rabbits. The aim of the study is to study the dynamics and nature of morphological changes in bone tissue and bone marrow of the femur at different stages of experimentally induced osteomyelitis in rabbits. Material and methods. The experiment was performed on 18 Soviet Chinchilla rabbits. Osteomyelitis was modeled by intraosseous administration of a suspension of Staphylococcus aureus at a concentration of  1×108 CFU/ml into the distal metaphysis of the femur. The control group of animals received an injection of sterile saline. Animals were withdrawn from the experiment on days 3, 7 and 14. Light microscopy of histological sections stained with hematoxylin and eosin, as well as according to van Gieson, was used for morphological examination. Results. It was established that osteomyelitis develops in stages. On the 3rd day, a picture of acute serous-purulent inflammation of the bone marrow with massive neutrophilic infiltration, vascular thrombosis and initial signs of necrosis of the bone trabeculae was observed. By the 7th day, the inflammation acquired a purulent-destructive character with the formation of abscesses, bone tissue sequesters and periosteal reaction. A sharp increase in the number of osteoclasts was noted. On the 14th day, the process passed into the chronic phase: the formation of a demarcation ridge of coarse-fibrous bone tissue surrounding the sequesters was noted. Active osteogenesis was combined with areas of destruction. Conclusion. The study demonstrates that the experimental model of osteomyelitis induced by the introduction of Staphylococcus aureus into the femur of rabbits reliably reproduces the key pathomorphological stages of the disease characteristic of humans (acute, destructive and chronic). The obtained data allow using this model for further study of osteomyelitis pathogenesis and preclinical evaluation of the effectiveness of new therapeutic methods.

About the Authors

G. G. Dzyuba
Omsk State Medical University
Россия

German G. Dzyuba – Doct. Sci. (Med.), Associate Professor, Head of Traumatology and Orthopedics Department

Omsk



V. A. Akulinin
Omsk State Medical University
Россия

Viktor A. Akulinin – Doct. Sci. (Med.), Professor, Head of Histology, Cytology and Embryology Department

Omsk



S. A. Erofeev
Omsk State Medical University
Россия

Sergei A. Erofeev – Doct. Sci. (Med.), Professor at the Traumatology and Orthopedics Department

Omsk



S. S. Stepanov
Omsk State Medical University
Россия

Sergei S. Stepanov – Doct. Sci. (Med.), Senior Rresearcher of Histology, Cytology and Embryology Department

Omsk 



E. N. Gorbach
Ilizarov Scientific and Medical Research Center of Traumatology and Orthopedics
Россия

Elena N. Gorbach – Cand. Sci. (Biol.), Leading Researcher of Laboratory of Morphology

Kurgan



M. V. Markelova
Omsk State Medical University
Россия

Marina V. Markelova – Cand. Sci. (Med.), Associate Professor at Department of Pathological Anatomy

Omsk 



B. S. Gavrish
Omsk State Medical University
Россия

Bogdan S. Gavrish – student

Omsk



S. V. Lysenko
Clinical Medical and Surgical Center
Россия

Sergei V. Lysenko – surgeon, head of the surgery department No. 3

Omsk



References

1. Mironov SP, Tsiskarashvili AV, Gorbatiuk DS. Khronicheskii posttravmaticheskii osteomielit kak problema sovremennoi travmatologii i ortopedii (obzor literatury). Genii ortopedii. 2019;25(4):610-621. (In Russ.).

2. Rimashevskii DV, Akhtiamov IF, Fedulichev PN, Wessam Z, Ustazov KA, Abdul B, Moldakulov ZHM, Zinovev MP. Patogeneticheskie osobennosti lecheniia khronicheskogo osteomielita (obzor literatury). Genii ortopedii. 2021;27(5):628–635. (In Russ.).

3. Rozova LV, Godovykh NV. Antibiotikorezistentnost' vozbuditelei khronicheskogo posttravmaticheskogo osteomielita. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya. 2016;18(1):63-67. (In Russ.).

4. Skurikhina YuE, Papynov EK, Zaitseva EA, Shichalin OO. Osobennosti formirovaniya bakterial'nykh bioplenok na keramike razlichnogo sostava, ispol'zuemoi dlya ortopedicheskogo endoprotezirovaniya. Tikhookeanskii meditsinskii zhurnal. 2023;1:50–54. doi: 10.34215/1609-1175-2023-1-50-54. (in Russ.).

5. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–342. doi: 10.1038/nature01658.

6. Brady RA, Leid JG, Calhoun JH, Costerton JW, Shirtliff ME. Osteomyelitis and the role of biofilms in chronic infection. FEMS Immunol Med Microbiol. 2006;52(1):13–22. doi: 10.1111/j.1574-695X.2007.00357.x.

7. Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nature Rev Rheumatol. 2012;8(3):133–143. doi: 10.1038/nrrheum.2012.1.

8. Costerton JW, Montanaro L, Arciola CR. Biofilm in implant infections: its production and regulation. Internation. J Artificial Organs. 2005;28(11):1067–1074. doi: 10.1177/039139880502801103.

9. Fritz JM, McDonald JR. Osteomyelitis: approach to diagnosis and treatment. Physic Sportsmedicine. 2008;36(1):50–54. doi: 10.3810/psm.2008.12.11.

10. Graves DT, Alshabab A, Albiero ML, Mattos M, Corrêa JD, Chen S, Yang Y. Osteocytes play an important role in experimental periodontitis in healthy and diabetic mice through expression of RANKL. J Clin Periodontol. 2018 Mar;45(3):285-292. doi: 10.1111/jcpe.12851.

11. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453(7193):314–321. doi: 10.1038/nature07039.

12. Hajdu KS, Baker CE, Moore-Lotridge S.N., Schoenecker J.G. Sequestration and involucrum: understanding bone necrosis and revascularization in pediatric orthopedics. Orthoped Clinic North America. 2024;55(2):233-246. doi: 10.1016/j.ocl.2023.09.005.

13. Kobayashi SD, Malachowa N, DeLeo F.R. Neutrophils and bacterial immune evasion. J Innate Immunity. 2018;10(5-6):432–441. doi: 10.1159/000487756.

14. Lew DP, Waldvogel FA. Osteomyelitis. Lancet. 2004;364(9431):369–379. doi: 10.1016/S0140-6736(04)16727-5.

15. Lucke M, Schmidmaier G, Sadoni S, Wildemann B, Schiller R, Stemberger A, Haas NP, Raschke M. A new model of implant-related osteomyelitis in rats. J Biomed Mater Res B Appl Biomater. 2003 Oct 15;67(1):593-602. doi: 10.1002/jbm.b.10051.

16. Masters EA, Trombetta RP, de Mesy Bentley KL, Boyce BF, Gill AL, Gill SR, et. al. Evolving concepts in bone infection: redefining "biofilm", "acute vs. chronic osteomyelitis", "the immune proteome" and "local antibiotic therapy". Bone Res. 2019 Jul 15;7:20. doi: 10.1038/s41413-019-0061-z.

17. Masters EA, Ricciardi BF, Bentley KLM, Moriarty TF, Schwarz EM, Muthukrishnan G. Skeletal infections: microbial pathogenesis, immunity and clinical management. Nat Rev Microbiol. 2022 Jul;20(7):385-400. doi: 10.1038/s41579-022-00686-0

18. Nauseef WM, Borregaard N. Neutrophils at work. Nat Immunol. 2014 Jul;15(7):602-11. doi: 10.1038/ni.2921.

19. Norden CW. Experimental osteomyelitis. I. A description of the model. J Infect Dis. 1970 Nov;122(5):410-8. doi: 10.1093/infdis/122.5.410.

20. Novack DV, Teitelbaum SL. The osteoclast: friend or foe? Annu Rev Pathol. 2008;3:457-84. doi: 10.1146/annurev.pathmechdis.3.121806.151431.

21. Schindeler A, McDonald MM, Bokko P, Little DG. Bone remodeling during fracture repair: The cellular picture. Semin Cell Dev Biol. 2008 Oct;19(5):459-66. doi: 10.1016/j.semcdb.2008.07.004.

22. Huang S, Wen J, Zhang Y, Bai X, Cui ZK. Choosing the right animal model for osteomyelitis research: Considerations and challenges. J Orthop Translat. 2023 Nov 29;43:47-65. doi: 10.1016/j.jot.2023.10.001.

23. Smeltzer MS, Thomas JR, Hickmon SG, Skinner RA, Nelson CL, Griffith D, Parr TR Jr, Evans RP. Characterization of a rabbit model of staphylococcal osteomyelitis. J Orthop Res. 1997 May;15(3):414-21. doi: 10.1002/jor.1100150314.

24. Trampuz A, Zimmerli W. Diagnosis and treatment of infections associated with fracture-fixation devices. Injury. 2006 May;37 Suppl 2:S59-66. doi: 10.1016/j.injury.2006.04.010.

25. Zheng Y, Rudensky AY. Foxp3 in control of the regulatory T cell lineage. Nat Immunol. 2007 May;8(5):457-62. doi: 10.1038/ni1455


Review

For citations:


Dzyuba G.G., Akulinin V.A., Erofeev S.A., Stepanov S.S., Gorbach E.N., Markelova M.V., Gavrish B.S., Lysenko S.V. Morphological Changes in the Femur in Experimental Osteomyelitis in Rabbits. Journal of Anatomy and Histopathology. 2025;14(4):34-46. (In Russ.) https://doi.org/10.18499/2225-7357-2025-14-4-34-46

Views: 44

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2225-7357 (Print)