Structural Features of the Liver of Leptin-Resistant db/db Mice with Systematic Administration of Recombinant Apolipoprotein A-I
https://doi.org/10.18499/2225-7357-2025-14-1-54-65
Abstract
The aim was to establish the nature of liver remodeling in hyperglycemia and insulin resistance in leptin-resistant db/db mice and to study the possibility of reversing the identified structural changes during glucose metabolism correction using systematic administration of recombinant apolipoprotein A-I (rApoA-I). Material and methods. The structural organization of the liver was studied in db/db mice (n=46) at the age of 10, 12 and 24 weeks, including weekly subcutaneous administration of rApoA-I (at a dose of 7 mg/kg body weight) as a glucose metabolism corrector from the age of 8 weeks. C57/Bl mice without glucose metabolism disorders (n=12) were used as a control. Liver samples for microscopical examination were fixed in 10% neutral formalin, embedded in paraffin and stained with hematoxylin and eosin, according to Mallory, and the PAS reaction was performed. To obtain semi-thin sections, liver fragments were fixed in 4% paraformaldehyde, post-fixed in 1% osmium tetroxide, embedded in a mixture of epon and araldite. Semi-thin sections stained with azure II were used for stereological analysis. Results. In 24-week-old db/db mice, glucose and insulin concentrations were increased (by 2.9 and 6.5 times, respectively, p<0.001) compared to the age-matched control, which reflected glucose metabolism disorders. Systematic administration of rApoA-I starting from the age of 8 weeks resulted in a reliable decrease in the concentration of glucose in the blood plasma (by 37%) in mice at the age of 24 weeks, however, this index remained elevated (2 times) relative to the control animals. Administration of rApoA-I did not affect the concentration of insulin throughout the experiment. The peculiarities of the structural organization of the liver of db/db mice include pronounced discomplexation of the liver lobules with pronounced dystrophic/necrobiotic changes in hepatocytes, a significant decrease in the volume densities of hepatocyte nuclei, sinusoids and connective tissue components when compared with mice with normal indices of glucose metabolism. The most significant characteristics of the morphological picture of the liver of db/db mice include massive necrotic lesions of hepatocytes, sometimes affecting the entire lobule in the absence of leukocyte infiltration. Systematic administration of rApoA-I did not significantly affect the nature of liver remodeling, but contributed to a decrease in the severity of dystrophic damage of hepatocytes and a decrease in necrotic foci. Conclusion. The data obtained indicate that systematic administration of rApoA-I does not change the nature of liver remodeling in db/db mice with genetically determined leptin resistance, despite a decrease in plasma glucose levels, but a decrease in the severity of pathological changes is noted, in particular, a decrease in the volume density of hepatocyte necrosis foci and a less pronounced decrease in the volume density of sinusoids and the volume ratio of sinusoids to hepatocytes.
Keywords
About the Authors
E. L. LushnikovaRussian Federation
Elena L. Lushnikova – Doct. Sci. (Biol.), Professor, Head of Institute of Molecular Pathology and Pathomorphology, Federal Research Center for Fundamental and Translational Medicine.
Timakova ul., 2, Novosibirsk, 630060
M. G. Klinnikova
Russian Federation
Marina G. Klinnikova – Doct. Sci. (Biol.), Chief Researcher, Federal Research Center for Fundamental and Translational Medicine.
Novosibirsk
E. I. Yuzhik
Russian Federation
Ekaterina I. Yuzhik – Cand. Sci. (Biol.), Senior Researcher, Federal Research Center for Fundamental and Translational Medicine.
Novosibirsk
R. A. Knyazev
Russian Federation
Roman A. Knyazev – Cand. Sci. (Biol.), Deputy Director for Research, Federal Research Center for Fundamental and Translational Medicine.
Novosibirsk
M. I. Voevoda
Russian Federation
Mikhail I. Voevoda – Doct. Sci. (Med.), Professor, Academician of RAS, Head of Federal Research Center for Fundamental and Translational Medicine.
Novosibirsk
References
1. Voevoda MI, Knyazev RA, Miroshnichenko SM, Usynin IF, Polyakov LM. Method for the treatment and prevention of hyperglycemia and insulin resistance and associated diseases and functional disorders of organs and systems and a means for its implementation. Patent RU 2823334 C1, 22.07.2024. Application dated 24.07.2023. (In Russ.)
2. Kiseleva EV, Demidova TYu. Nealkogol'naya zhirovaya bolezn' pecheni i sakharnyi diabet 2 tipa: problema sopryazhennosti i etapnosti razvitiya. Ozhirenie i metabolizm. 2021;18(3): 313-319. (In Russ.). doi: 10.14341/omet12758
3. Pritulina YuG, Prokopenko SE, Kordenko AA., Atyakshin DA., Lobanov VL. Otsenka vliyaniya remaksola na gepatotsity pri modelirovanii nealkogol'noi zhirovoi distrofii u laboratornykh myshei linii C57BL/6. Arkhiv patologii. 2019; 81(5):64-69. doi:10.17116/patol20198105164. (In Russ.)
4. Ardaiz N, Gomar C, Vasquez M, Tenesaca S, Fernandez-Sendin M, Di Trani CA, Belsué V, Escalada J, Werner U, Tennagels N, Berraondo P. Insulin Fused to Apolipoprotein A-I Reduces Body Weight and Steatosis in DB/DB Mice. Front Pharmacol. 2021 Feb 19;11:591293. doi: 10.3389/fphar.2020.591293
5. Cochran BJ, Ryder WJ, Parmar A, Tang S, Reilhac A, Arthur A, Charil A, Hamze H, Barter PJ, Kritharides L, Meikle SR, Gregoire MC, Rye KA. In vivo PET imaging with [(18)F]FDG to explain improved glucose uptake in an apolipoprotein A-I treated mouse model of diabete. Diabetologia. 2016 Sep;59(9):1977-84. doi: 10.1007/s00125-016-3993-5
6. Easton R, Gille A, D'Andrea D, Davis R, Wright SD, Shear C A multiple ascending dose study of CSL112, an infused formulation of ApoA-I. J Clin Pharmacol. 2014 Mar;54(3):301-10. doi: 10.1002/jcph.194
7. Fritzen AM, Domingo-Espín J, Lundsgaard AM, Kleinert M, Israelsen I, Carl CS, Nicolaisen TS, Kjøbsted R, Jeppesen JF, Wojtaszewski JFP, Lagerstedt JO, Kiens B. ApoA-1 improves glucose tolerance by increasing glucose uptake into heart and skeletal muscle independently of AMPKα2. Mol. Metab. 2020 May;35:100949. doi: 10.1016/j.molmet.2020.01.013
8. Guest PC, Rahmoune H. Characterization of the db/db Mouse Model of Type 2 Diabetes. Methods Mol Biol. 2019:1916:195-201. doi: 10.1007/978-1-4939-8994-2_18
9. Guilbaud A, Howsam M, Niquet-Léridon C, Delguste F, Boulanger E, Tessier FJ. The LepR(db/db) mice model for studying glycation in the context of diabetes. Diabetes Metab Res Rev. 2019 Feb;35(2):e3103. doi: 10.1002/dmrr.3103
10. Izquierdo AG, Crujeiras AB. Leptin, Obesity, and Leptin Resistance: Where are We 25 Years Later? Nutrients. 2019 11:2704. doi:10.3390/nu11112704
11. Kim SI, Shin D, Choi TH, Lee JC, Cheon GJ, Kim KY, Park M, Kim M. Systemic and specific delivery of small interfering RNAs to the liver mediated by apolipoprotein A-I. Mol. Ther. 2007 Jun; 15 (6): 1145–1152. doi:10.1038/sj.mt.6300168
12. Li DJ, Liu J, Hua X, Fu H, Huang F, Fei YB. Lu WJ, Shen FM, Wang P. Nicotinic acetylcholine receptor α7 subunit improves energy homeostasis and inhibits inflammation in nonalcoholic fatty liver disease. Metabolism. 2018; 79:52–63. doi: 10.1016/j.metabol.2017.11.002
13. Liang W, Zhang D, Kang J, Meng Z, Yang J, Yang L, Xue N, Gao Q, Han S, Gou X. Protective effects of rutin on liver injury in type 2 diabetic db/db mice. Biomedicine & Pharmacotherapy. 2018. 107: 721-728. doi: 10.3892/mmr.2021.12381
14. Münzberg H, Heymsfield SB, Berthoud HR, Morrison CD. History and future of leptin: Discovery, regulation and signaling. Metabolism. 2024 Dec;161:156026. doi: 10.1016/j.metabol.2024.156026
15. Obradovic M, Sudar-Milovanovic E, Soskic S, Essack M, Arya S, Stewart AJ, Gojobori T, Isenovic ER. Leptin and Obesity: Role and Clinical Implication. Front Endocrinol. (Lausanne). 2021 May 18;12:585887. doi: 10.3389/fendo.2021.585887
16. Ryabchenko AV, Kotova MV, Tverdohleb NV, Knyazev RA, Polyakov LM. Production and Analysis of Biological Properties of Recombinant Human Apolipoprotein A-I. Bulletin of Experimental Biology and Medicine. 2015; 160(1):129-133. doi: 10.1007/s10517-015-3113-4
17. Scheen AJ. Beneficial effects of SGLT2 inhibitors on fatty liver in type 2 diabetes: A common comorbidity associated with severe complications. Diabetes Metab. 2019 Jun;45(3):213-223. doi: 10.1016/j.diabet.2019.01.008
18. Yang H, Yang T, Heng C, Zhou Y, Jiang Z, Qian X, Du L, Mao S, Yin X. Lu Q. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. Phytother Res. 2019; 33: 3140–3152. doi: 10.1002/ptr.6486
19. Younossi Z, Tacke F, Arrese M, Chander Sharma B, Mostafa I, Bugianesi E, Wai-Sun Wong V, Yilmaz Y, George J, Fan J, Vos MB. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology. 2019. 69:2672–2682. doi: 10.1002/hep.30251
20. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional Cloning of the Mouse Obese Gene and its Human Homologue // Nature. 1994. 372:425–32. doi: 10.1038/372425a0
21. Zhao W, Chen L, Zhou H, Deng C, Han Q, Chen Y, Wu Q, Li S. Protective effect of carvacrol on liver injury in type 2 diabetic db/db mice. Mol. Med. Rep. 2021; 24(5):741. doi: 10.3892/mmr.2021.1238
22. Zheng Y, Liu T, Wang Z, Xu Y, Zhang Q, Luo D. Low molecular weight fucoidan attenuates liver injury via SIRT1/AMPK/PGC1α axis in db/db mice. Int. J. Biol. Macromol. 2018; 112:929–936. doi: 10.1016/j.ijbiomac.2018.02.072
Review
For citations:
Lushnikova E.L., Klinnikova M.G., Yuzhik E.I., Knyazev R.A., Voevoda M.I. Structural Features of the Liver of Leptin-Resistant db/db Mice with Systematic Administration of Recombinant Apolipoprotein A-I. Journal of Anatomy and Histopathology. 2025;14(1):54-65. (In Russ.) https://doi.org/10.18499/2225-7357-2025-14-1-54-65