Effect of Cholestasis on Cholinergic Neurons of Cingulate Cortex in Rats
https://doi.org/10.18499/2225-7357-2025-14-1-45-53
Abstract
Cholestasis, characterized by stagnation of bile in the liver and impaired excretion of bile into the intestine, causes digestive disorders and the entry of toxic components of bile into the blood and brain. The study of the effect of cholestasis on cholinergic neurons of the cingulate cortex in rats allows us to understand the mechanisms of pathological changes in the brain. The aim was to investigate the effect of cholestasis on cholinergic neurons of cingulate cortex in rats. Material and methods. The study involved 72 outbred white male rats weighing 225±25 g. Subhepatic cholestasis was modeled using the method of L.S. Kizyukevich. The animals of the control group underwent a sham operation. Rats of the control and experimental groups were decapitated on the 2nd, 5th, 10th, 20th, 45th and 90th days. fragments of the cerebral hemispheres were embedded in paraffin and 5 µm thick frontal sections were prepared, stained with antibodies to the choline acetyltransferase (ChAT) protein. Neurons of the cingulate cortex of the rat brain were studied. The number of cholinergic neurons in the preparations was counted, and the relative content of ChAT in their cytoplasm was cytophotometrically estimated. The data were subjected to statistical processing. Results. It was found that, under normal conditions, the number of cholinergic neurons in the parvocellular layer of the cingulate cortex is greater than in the magnopyramidal layer. The content of ChAT in the cytoplasm of the perikarya of neurons in the parvocellular layer decreases 5 and 10 days after cholestasis. With continued cholestasis (on the 10th and 20th days after surgery), the number of cholinergic neurons in the parvocellular layer of the cingulate cortex decreases, indicating their death. The content of ChAT in the cytoplasm of neurons of the magnopyramidal layer decreases only by the 10th day of cholestasis. In this case, the maximum loss of cholinergic neurons is detected on the 45th day. Cholinergic neurons of the parvocellular layer respond faster to cholestasis and the surviving neurons normalize earlier after its disappearance, compared with neurons of the magnopyramidal layer of the cingulate cortex. Conclusion. A decrease in the content of ChAT, indicating a violation of acetylcholine synthesis, and the loss of cholinergic neurons in the cingulate cortex may underlie the cognitive deficit observed in patients with cholestasis.
About the Authors
T. V. KlimutBelarus
Tatyana V. Klimut – Graduate Student, Department of Histology, Cytology and Embryology, Grodno State Medical University.
Gor'kogo ul., 80, Grodno, 230009
A. V. Zaerko
Belarus
Anastasia V. Zaerko – Cand. Sci. (Biol.), Associate Professor, Department of Histology, Cytology and Embryology, Grodno State Medical University.
Grodno
S. V. Emelyanchik
Belarus
Sergey V. Emelyanchik – Doct. Sci. (Biol.), Associate Professor, Head of Department of Ecology, Yanka Kupala Grodno State University.
Grodno
S. M. Zimatkin
Belarus
Sergey M. Zimatkin – Doct. Sci. (Biol.), Professor, Head of Department of Histology, Cytology and Embryology, Grodno State Medical University.
Grodno
References
1. Banin VV, Bykov VL. Terminologia Histologica. Mezhdunarodnye terminy po citologii i gistologii cheloveka s oficial'nym spiskom russkih ekvivalentov. M. GEOTAR-Media; 2009. 272 (In Russ.).
2. Vakhrushev YaM, Khokhlacheva NA. Zhelchnokamennaya bolezn': epidemiologiya, faktory riska, osobennosti klinicheskogo techeniya, profilaktika. Archive of Internal Medicine. 2016;6(3):30–35. doi: 10.20514/2226-6704-2016-6-3-30-35. (In Russ.).
3. Dzyak LA, Tsurkalenko ES. Rol' holinergicheskogo deficita v patogeneze psihonevrologicheskih zabolevanij. Mezhdunarodnyj nevrologicheskij zhurnal.м2019;3(105):39–47. doi:10.22141/2224-0713.3.105.2019.169917. (In Russ.).
4. Emelyanchik SV, Karnyushko OA, Zimatkin SM. Costoyanie mitohondrij v kletkah Purkin'e mozzhechka krysy pri holestaze. Klinicheskaya i eksperimental'naya morfologiya. 2019;8(2):41-47. doi:10.31088/2226-5988-2019-30-2-41-47. (In Russ.).
5. Zimatkin SM, Emelyanchik SV. Nejrony mozga pri narusheniyah cirkulyacii zhelchi. Grodno: GrSMU; 2021, 368. (In Russ.).
6. Karkishchenko VN, Fokin YuV, Lyublinskii SL, Pomytkin IA, Alimkina OV, Taboyakova LA, Kaptsov AV, Borisova MM, Karkishchenko NN. Tsentral'nye mekhanizmy liposomirovannykh form atsetilkholina i insulina posredstvom analiza kognitivnykh, psikhoemotsional'nykh i povedencheskikh parametrov krys. Biomeditsina. 2022;18(1):32–55. doi:10.33647/2074-5982-18-1-32-55. (In Russ.).
7. Kizyukevich LS. Prichiny razvitiya poliorgannoi nedostatochnosti pri khirurgicheskoi patologii zhelchevyvodyashchikh putei. Vesti Natsional'noi akademii nauk Belarusi. Seriya meditsinskie nauki. 2005;2:118–121. (In Russ.).
8. Kizyukevich LS. Reaktivnye izmeneniya v pochkah pri eksperimental'nom holestaze. Grodno: GrSMU, 2005, 239. (In Russ.).
9. Klimut' TV, Zaerko AV, Emel'yanchik SV, Zimatkin SM. ATF-sintaza v nejronah poyasnoj kory mozga krys pri podpechenochnom holestaze. Klinicheskaya i eksperimental'naya morfologiya. 2025;14(1):54–61. doi: 10.31088/CEM2025.14.1.54-61. (In Russ.).
10. Klimut' TV, Zaerko AV, Emel'yanchik SV. S.M. Zimatkin. Izmeneniya hromatofilii citoplazmy i soderzhaniya RNK v nejronah poyasnoj kory mozga krys pri podpechenochnom holestaza. Morfologiya. 2024;162(1):41-53. doi: 10.17816/morph.629000. (In Russ.).
11. Korzhevsky DE, Grigoriev IP, Otellin VA. Primenenie obezvozhivayushchih fiksatorov, soderzhashchih soli cinka, v nejrogistologicheskih issledovaniyah. Morphology. 2006;129(1):85–86. (In Russ.).
12. Kudryavtseva VA, Kuz'min EA, Moiseeva AV, Obel'chakova MS, Sinitsyna PA, Filistovich TI, Kartashkina NL, P'yavchenko GA, Golubev AM, Kuznetsov SL. Molekulyarnye i morfologicheskie markery gibeli neironov pri ostrykh narusheniyakh mozgovogo krovoobrashcheniya. Sechenovskii vestnik. 2022;13(4): 18–32. doi: 10.47093/2218-7332.2022.13.4.18-32. (In Russ.).
13. Mazhirina KG, Pervushina ON, Fedorov AA, Shtark MB. Neirovizualizatsiya i fenomen moral'nogo vybora. Uspekhi fiziologicheskikh nauk. 2021;52(1):16–30. doi: 10.31857/S0301179821010057. (In Russ.).
14. Omel'chenko VP, Demidova AA. Informatika, medicinskaya informatika, statistika. Moskva: GEOTAR-Media, 2021. 608. (In Russ.).
15. Teoreticheskie osnovy i prakticheskoe primenenie metodov immunogistokhimii : rukovodstvo. Pod red. D. E. Korzhevskii. 2-e izd., ispr. i dop. SPb. : SpetsLit; 2014. 119. (In Russ.).
16. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes : text with EEA relevance 20.10.2010. Strasbourg : Official Journal of the European Union. 2010. 46.
17. Esfahani DE, Zarrindast MR. Cholestasis and behavioral disorders. Gastroenterol Hepatol Bed Bench. 2021;14(2):95-107. doi: 10.33647/2074-5982-18-1-32-55.
18. Hosseini N, Nasehi M, Radahmadi M, Zarrindast M-R. Effects of CA glutamatergic systems upon memory impairments in cholestatic rats. Behavioural Brain Research. 2013;256:636–18. doi: 10.1016/j.bbr.2013.08.018.
19. Huang LT, Chen CC, Sheen JM, Chen YJ, Hsieh CS, Tain YL. The interaction between high ammonia diet and bile duct ligation in developing rats: Assessment by spatial memory and asymmetric dimethylarginine. Int J. Dev Neurosci. 2010;28:169–74. doi: 10.1016/j.ijdevneu.2009.11.006.
20. Huang LT, Tiao MM, Tain YL, Chen CC, Hsieh CS. Melatonin ameliorates bile duct ligation-induced systemic oxidative stress and spatial memory deficits in developing rats. Pediatr Res. 2009;65:176–80. doi: 10.1203/PDR.0b013e31818d5bc7.
21. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. London: Academic Press; 2007. 448.
Review
For citations:
Klimut T.V., Zaerko A.V., Emelyanchik S.V., Zimatkin S.M. Effect of Cholestasis on Cholinergic Neurons of Cingulate Cortex in Rats. Journal of Anatomy and Histopathology. 2025;14(1):45-53. (In Russ.) https://doi.org/10.18499/2225-7357-2025-14-1-45-53