Evaluation of the Morphometric Reliability of Umbilical Cord Vessels’ 3D Models
https://doi.org/10.18499/2225-7357-2024-13-4-101-106
Abstract
The aim was to create a three-dimensional model of the umbilical cord vessels of newborns, taking into account their individual morphometric features and evaluation the compliance of the morphometric parameters of the 3D model and the corrosion preparation. Material and methods. The material for the study included the umbilical cord vessels of full-term newborns whose status at birth was estimated at ≥7 points on the Apgar scale, in the amount of 20 samples, 10 cm long. The first stage of the study was the production of corrosion preparations based on the dental material “Belakril”-M XO. Then the corrosion preparations were scanned on a 3D scanner RangeVision SPECTRUM (Russia) on a rotary table at a speed of 24°/s. As a result, 3D models of umbilical cord vessels were obtained in the ScanCenter NG 2022 program.The number of turns in a given area was counted, the distance between the turns of the umbilical cord vessels was measured on corrosion preparations using an electronic caliper, the distance between the “artery and vein” complexes, the circumference of the umbilical cord vessel complex was measured with a centimeter tape, and the internal diameter of the arteries and veins was measured with a micrometer. Measurements of 3D models were taken in the Blender 4.2. STL program. Statistical data processing was carried out in the Statistica 10 program. Results. On the corrosion specimen and 3D model, the number of turns on the examined section of the umbilical cord with a length of 10 cm did not exceed two. The distance between the turns was 45 mm. The distance between adjacent “artery and vein” complexes was 45 mm. The internal diameter of the arteries and veins was 2.6 mm and 7.3 mm, respectively. Comparison of the morphometric parameters of the corrosion preparation and the 3D model showed no statistically significant differences. This observation may indicate the methodological accuracy and adequacy of the technology for constructing 3D models from the corrosion preparation. Conclusion. The morphometric parameters of computer 3D models of the umbilical cord vessels of full-term newborns created using the RangeVision SPECTRUM 3D scanner are identical to those of corrosive preparations. Such models can be used in the future as a basis for setting up biophysical experiments and for creating computer simulations.
About the Authors
M. Yu. KlyavlinaRussian Federation
Mariya Yu. Klyavlina – Human Anatomy Department
ul. Lenina, 3, Ufa, 450008
A. V. Maslennikov
Russian Federation
Anton V. Maslennikov – Cand. Sci. (Med.), Associate Professor of Human Anatomy Department
Ufa
D. Yu. Rybalko
Russian Federation
Dmitrii Yu. Rybalko – Cand. Sci. (Med.), Associate Professor, Head of Human Anatomy Department
Ufa
M. F. Galautdinov
Russian Federation
Mars F. Galautdinov – Head of the Additive Technologies Laboratory
Ufa
F. F. Kil'mukhametov
Russian Federation
Fanir F. Kil'mukhametov – engineer of the Additive Technologies Laboratory
Ufa
References
1. Avtandilov G.G. Osnovy kolichestvennoi patologicheskoi anatomii: Uchebnoe posobie dlya slushatelei sistemy poslediplomnogo obrazovaniya. M.: Meditsina, 2002. 237. (in Russ.).
2. Volkov A.E. Prenatal Diagnosis of Cord Pathology. Medical Herald of the South of Russia. 2011;(2):38-45. (in Russ.).
3. Glukhovets, B.I., Glukhovets, N.G. Patologiya posleda. SPb.: Graal', 2002. 488. (in Russ.).
4. Kivva, A.N., Leiga, A.V., Maeva, E.G. Diametr pupochnykh arterii u novorozhdennykh po dannym ul'trazvukovogo issledovaniya. Sovremennye problemy nauki i obrazovaniya. 2017; 1. URL: https://scienceeducation.ru/ru/article/view?id=26071. (in Russ.).
5. Kogan Ya. E. Patologiya pupoviny i ee rol' v perinatal'nykh oslozhneniyakh. Prakticheskaya meditsina. 2016;1(93):22-25. (in Russ.).
6. Radzinskii V.E., Milovanov A.P., Ordiyants I.M., Gagaev Ch.G., Morozov S.G., Kondrat'eva E.N., et al. Ekstraembrional'nye i okoloplodnye struktury pri normal'noi i oslozhnennoi beremennosti: Kollektivnaya monografiya.Pod red. professora V.E. Radzinskogo i professora A.P. Milovanova. M.: Meditsinskoe informatsionnoe agentstvo, 2004. 393. (in Russ.).
7. Popova IG, Protsenko EV, Sitnikova OG, Nazarov SB, Kuzmenko GN, Kharlamova NV. Pathomorphological and biochemical features of the endothelium of the umbilical cord vessels during pregnancy complicated by preeclampsia. Russian Journal of Human Reproduction. 2022;28(6):44-52. (in Russ.). DOI: 10.17116/repro20222806144. (in Russ.).
8. Usmanova N.K., Artykova N.P. Vzaimosvyaz' iskhodov rodov i morfologicheskikh osobennostei pupoviny. Vestnik Avitsenny. 2009;40(3):142-143. (in Russ.).
9. Shchegolev A.I., Tumanova U.N., Lyapin V.M. Izvitost' pupoviny: opredelenie, klassifikatsiya, klinicheskoe znachenie. Akusherstvo i Ginekologiya. 2019;2:42-50. DOI: 10.18565/aig.2019.2.42-50. (in Russ.).
10. Shchegolev A.I., Tumanova U.N., Lyapin V.M., Kozlova A.V., Bychenko V.G., Sukhikh G.T. Metodika kompleksnogo luchevogo i morfologicheskogo issledovaniya angioarkhitektoniki platsenty. Byulleten' eksperimental'noi biologii i meditsiny. 2020;169(3):380-386. (in Russ.).
11. Avnet H, Shen O, Mazaki E, Yagel S, DanielSpiegel E. Four-vessel umbilical cord. Ultrasound Obstet Gynecol. 2011 Nov;38(5):604-6. DOI: 10.1002/uog.9045.
12. Chappell J, Aughwane R, Clark AR, Ourselin S, David AL, Melbourne A. A review of feto-placental vasculature flow modelling. Placenta. 2023 Oct;142:56-63. DOI: 10.1016/j.placenta.2023.08.068.
13. Dagklis T, Defigueiredo D, Staboulidou I, Casagrandi D, Nicolaides KH. Isolated single umbilical artery and fetal karyotype. Ultrasound Obstet Gynecol. 2010 Sep;36(3):291-5. DOI: 10.1002/uog.7717.
14. Damiani GR, Del Boca G, Biffi A. Five-vessel umbilical cord and fetal outcome: an obstetric overview. J Matern Fetal Neonatal Med. 2022 Dec;35(25):6250-6253. DOI: 10.1080/14767058.2021.1910660.
15. Li TG, Wang G, Xie F, Yao JM, Yang L, Wang ML, Wang J, Xing L, Nie F. Prenatal diagnosis of single umbilical artery and postpartum outcome. Eur J Obstet Gynecol Reprod Biol. 2020 Nov;254:6-10. DOI: 10.1016/j.ejogrb.2020.08.047.
16. Lubusky M, Dhaifalah I, Prochazka M, Hyjanek J, Mickova I, Vomackova K, Santavy J. Single umbilical artery and its siding in the second trimester of pregnancy: relation to chromosomal defects. Prenat Diagn. 2007 Apr;27(4):327-31. DOI: 10.1002/pd.1672.
17. Strong TH Jr, Jarles DL, Vega JS, Feldman DB. The umbilical coiling index. Am J Obstet Gynecol. 1994 Jan;170(1 Pt 1):29-32.
18. Tchirikov M, Rybakowski C, Hüneke B, Schoder V, Schröder HJ. Umbilical vein blood volume flow rate and umbilical artery pulsatility as 'venousarterial index' in the prediction of neonatal compromise. Ultrasound Obstet Gynecol. 2002 Dec;20(6):580-5. DOI: 10.1046/j.1469-0705.2002.00832.x.
19. Weerakkody Y, Campos A, Machang'a K, et al. Single umbilical artery. Reference article, Radiopaedia.org (Accessed on 18 Dec 2024) URL: https://radiopaedia.org/articles/10823. DOI: 10.53347/rID-10823.
20. Zhang D, Lindsey SE. Recasting Current Knowledge of Human Fetal Circulation: The Importance of Computational Models. J Cardiovasc Dev Dis. 2023 May 30;10(6):240. DOI: 10.3390/jcdd10060240.
Review
For citations:
Klyavlina M.Yu., Maslennikov A.V., Rybalko D.Yu., Galautdinov M.F., Kil'mukhametov F.F. Evaluation of the Morphometric Reliability of Umbilical Cord Vessels’ 3D Models. Journal of Anatomy and Histopathology. 2024;13(4):101-106. (In Russ.) https://doi.org/10.18499/2225-7357-2024-13-4-101-106