Morphological Features of Bone Tissue Restoration with Local Use of Cdc42-Targeted Mesenchymal Stem Cells
https://doi.org/10.18499/2225-7357-2024-13-4-36-44
Abstract
The aim was to evaluate morphological effect of Cdc42 inhibition in mesenchymal stem cells (MSCs) on the restoration process bone defects during the late post-traumatic period of 24-months male rats with ulnar fractures. Material and methods. The experiment involved adult Wistar rats (males, weighing 400–500 grams, aged 24 months; n=40) undergoing ulnar diaphysis osteotomy. After the injury, the animals were randomized into four groups (10 rats per group). Group I animals served as controls and received no treatment. Group II animals were administered aged MSCs (cells isolated from 24-month-old rats). Group III received aged MSCs modified with the small molecule CASIN, while Group IV received aged MSCs transfected with miRNA (Cdc42 knockdown). Observations were completed 4 and 6 months post-injury. The cell dose was identical across all experimental groups – 1×106 cells in 200 µL of sodium phosphate buffer. The cell transplantation procedure was performed once, 24 hours after the fracture. Paraffin sections from the fracture site were stained using hematoxylin & eosin and the Van Gieson method. Morphometric analysis was conducted using ImageJ 1.53 with the StarDist plugin, and statistical hypothesis testing was performed using non-parametric methods in Statistica 8.0 software. Results. In all animals, foci with varying degrees of maturation of the cellular and extracellular matrix of the hard callus formed at the fracture site. A comparison of ulnar defect healing in the control group (which did not receive additional osteogenesis sources) and in the three groups with varying degrees of Cdc42 activity in transplanted MSCs revealed statistically significant differences in the number of cells within key regenerating pools. At 4 and 6 months post-injury, the most pronounced restoration of chondroblast and osteoblast precursors, as well as chondrocytes and osteocytes, occurred when using MSCs transfected with miRNA. This was likely due to maximal suppression of Cdc42 activity in MSCs and partial inhibition of their aging in the regeneration zones of the ulnar bone, facilitating further osteogenesis stimulation. Conclusion. Targeted inhibition and suppression of Cdc42 activity before the transplantation of MSCs derived from adipose tissue significantly improve the formation of immature callus and its transformation into mature tubular bone in aged animals. These results confirm the potential and feasibility of using Cdc42 targeting as combination therapy for fractures in elderly individuals.
About the Authors
F. S. OlzhayevKazakhstan
Farkhad S. Olzhaev – researcher of Laboratory of Bioengineering and Regenerative Medicine
Astana
B. A. Umbayev
Kazakhstan
Bauyrzhan A. Umbaev – PhD, leading researcher of Laboratory of Bioengineering and Regenerative Medicine
Astana
V. A. Akulinin
Russian Federation
Viktor A. Akulinin – Doct. Sci. (Med.), Professor, Head of Histology, Cytology and Embryology Department
Omsk
Y. I. Safarova
Kazakhstan
Yuliya I. Safarova – PhD, Senior Researcher of Laboratory of Bioengineering and Regenerative Medicine
Astana
S. S. Stepanov
Russian Federation
Sergei S. Stepanov – Doct. Sci. (Med.), Senior Rresearcher of Histology, Cytology and Embryology Department
Omsk
B. S. Gavrish
Russian Federation
Bogdan S. Gavrish – student
Omsk
Sh. N. Askarova
Kazakhstan
Sholpan N. Askarova – PhD, Head of Laboratory of Bioengineering and Regenerative Medicine
Astana
References
1. Borovikov V. Statistica. Iskusstvo analiza dannyh na komp'yutere. 2-nd ed. SPb.: Piter, 2003. 688. (in Russ.).
2. Olzhaev F.S., Akulinin V.A., Umbaev B.A., Safarova Yu.I., Stepanov S.S., Gavrish B.S., i dr. Morfologicheskaya kharakteristika zony pereloma loktevoi kosti krys na fone terapii modifitsirovannymi mezenkhimal'nymi stvolovymi kletkami pri eksperimental'nom osteoporoze. Zhurnal anatomii i gistopatologii. 2024;13(3):49-59. (in Russ.).
3. Arana M., Mazo M., Aranda P., Pelacho B., Prosper F. Adipose tissue-derived mesenchymal stem cells: isolation, expansion, and characterization. Methods Mol Biol. 2013;1036:47-61. DOI: 10.1007/978-1-62703-511-8_4.
4. Banavar SP, Trogdon M., Drawert B., Yi T.M., Petzold L.R., Campàs O. Coordinating cell polarization and morphogenesis through mechanical feedback. PLoS Comput Biol. 2021 Jan 28;17(1):e1007971. DOI: 10.1371/journal.pcbi.1007971.
5. Duan X., Perveen R., Dandamudi A., Adili R., Johnson J., Funk K., Berryman M,. Davis A.K., Holinstat M., Zheng Y., Akbar H. Pharmacologic targeting of Cdc42 GTPase by a small molecule Cdc42 activity-specific inhibitor prevents platelet activation and thrombosis. Sci Rep. 2021 Jun 23;11(1):13170. DOI: 10.1038/s41598-021-92654-6.
6. Falato L., Gestin M., Langel Ü. Cell-penetrating peptides delivering siRNAs: an overview. Methods Mol Biol. 2021;2282:329-352. doi: 10.1007/978-1-0716-1298-9_18
7. Festing MFW, Altman DG. Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J. 2002;43(4):244-58. DOI: doi.org/10.1093/ilar.43.4.244.
8. Florian M.C., Leins H., Gobs M., Han Y. et al. Inhibition of Cdc42 activity extends lifespan and decreases circulating inflammatory cytokines in aged female C57BL/6 mice. Aging Cell. 2020 Sep;19(9):e13208. DOI: 10.1111/acel.13208.
9. Foulke B.A,. Kendal A.R,. Murray D.W., Pandit H. Fracture healing in the elderly: A review. Maturitas. 2016 Oct;92:49-55. DOI: 10.1016/j.maturitas.2016.07.014.
10. Liu G.X., Zhu J.C., Chen X.Y, Zhu A.Z., Liu C.C,. Lai Q., Chen S.T. Inhibition of adipogenic differentiation of bone marrow mesenchymal stem cells by erythropoietin via activating ERK and P38 MAPK. Genet Mol Res. 2015 Jun 26;14(2):6968- 77 Genet Mol Res. 2015.14:6968-6977. DOI: 10.4238/2015.June.26.5.
11. Mierke C.T, Puder S., Aermes C., Fischer T., Kunschmann T. Effect inhibition on cell mechanics depends on Rac1. Front Cell Dev Biol. 2020 Jan 28;8:13. DOI: 10.3389/fcell.2020.00013.
12. Moazzam M., Zhang M., Hussain A., Yu X., Huang J., Huang Y. The landscape of nanoparticle-based siRNA delivery and therapeutic development. Mol Ther. 2024 Feb 7;32(2):284-312. DOI: 10.1016/j.ymthe.2024.01.005.
13. Murphy N.P., Mott H.R., Owen D. Progress in the therapeutic inhibition of Cdc42 signalling. Biochem Soc Trans. 2021 Jun 30;49(3):1443-1456. DOI: 10.1042/BST20210112.
14. Nikolaou V.S,. Efstathopoulos N., Kontakis G., Kanakaris N.K., Giannoudis P.V. The influence of osteoporosis in femoral fracture healing time. Injury. 2009 Jun;40(6):663-8. DOI: 10.1016/j.injury.2008.10.035.
15. Rudiansyah M., El-Sehrawy A.A., Ahmad I., Terefe E.M., Abdelbasset W.K., Bokov D.O., Salazar A., Rizaev J.A., Muthanna F.M.S., Shalaby M.N. Osteoporosis treatment by mesenchymal stromal/stem cells and their exosomes: emphasis on signaling pathways and mechanisms. Life Sci. 2022 Oct 1;306:120717. DOI: 10.1016/j.lfs.2022.120717.
16. Rutkowski D.M., Vincenzetti V., Vavylonis D., Martin S.G. Cdc42 mobility and membrane flows regulate fission yeast cell shape and survival. 2023 Jul 21;2023.07.21.550042. DOI: 10.1101/2023.07.21.550042.
17. Safarova Y.Y., Olzhayev F., Umbayev B,. Tsoy A., Hortelano G., Tokay T. et al. Mesenchymal Stem Cells Coated with Synthetic Bone-Targeting Polymers Enhance Osteoporotic Bone Fracture Regeneration. Bioengineering (Basel). 2020 Oct 12;7(4):125. DOI: 10.3390/bioengineering7040125.
18. Umbayev B., Masoud A-R., Tsoy A., Alimbetov D., Olzhayev F., Shramko A., Kaiyrlykyzy A., Safarova Y., Davis T., Askarova S. Elevated levels of the small GTPase Cdc42 induces senescence in male rat mesenchymal stem cells. Biogeront. 2018;19:287-301. DOI: 10.1007/s10522-018-9757-5.
19. Umbayev B., Safarova Y., Yermekova A, Nessipbekova A, Syzdykova A, Askarova S. Role of a small GTPase Cdc42 in aging and age-related diseases. Biogeron. 2023;24(1):27-46. DOI: 10.1007/s10522-022-10008-9.
20. Wang Y., Yao Y. Nanofiber alignment mediates the pattern of single cell migration. Langmuir. 2020 Mar 3;36(8):2129-2135. DOI: 10.1021/acs.langmuir.9b03314.
21. Weigert M., Schmidt U. Nuclei instance segmentation and classification in histopathology images with StarDist. In: Proceedings of the IEEE International Symposium on Biomedical Imaging Challenges (ISBIC), Kolkata, India, 2022 Aug 19. DOI: 10.1109/ISBIC56247.2022.9854534.
22. Woolf A.D., Akesson K. Preventing fractures in elderly people. BMJ. 2003 Jul 12;327(7406):89-95. DOI: 10.1136/bmj.327.7406.89.
23. Xu X.P., He H.L., Hu S.L., Han J.B., Huang L.L., Xu J.Y. et al. Ang II-AT2R increases mesenchymal stem cell migration by signaling through the FAK and RhoA/Cdc42 pathways in vitro. Stem Cell Res Ther. 2017 Jul 12;8(1):164. DOI: 10.1186/s13287-017-0617-z. Retraction in: Stem Cell Res Ther. 2022 Jan 31;13(1):46. DOI: 10.1186/s13287-022-02733-2.
Review
For citations:
Olzhayev F.S., Umbayev B.A., Akulinin V.A., Safarova Y.I., Stepanov S.S., Gavrish B.S., Askarova Sh.N. Morphological Features of Bone Tissue Restoration with Local Use of Cdc42-Targeted Mesenchymal Stem Cells. Journal of Anatomy and Histopathology. 2024;13(4):36-44. (In Russ.) https://doi.org/10.18499/2225-7357-2024-13-4-36-44