Preview

Journal of Anatomy and Histopathology

Advanced search

Features of NeuN Expression in the Cingulate Cortex of the Cerebral Hemispheres of Mice After Administration of Escherichia Coli Lipopolysaccharide

https://doi.org/10.18499/2225-7357-2024-13-4-22-28

Abstract

The aim was to observe changes in NeuN expression in the cingulate cortex of the cerebral hemispheres of mice after intraperitoneal administration of various doses of bacterial lipopolysaccharide (LPS). Material and methods. The study was conducted on 12 C57Bl/6 mice, which were injected intraperitoneally at the same time for 4 days with saline (control group) or E. coli LPS in one of the following doses: 0.5 mg/kg/day (1st group), 1 mg/kg/day (2nd group) or 2 mg/kg/day (3rd group). Brain sampling was performed in animals and histological preparations with a 5 µm thickness were made and stained with antibodies to the NeuN. The number of NeuN-expressing cells in the cingulate cortex of the cerebral hemispheres, in the Cg1 area/dorsal anterior cingulate cortex, was counted. The data were also statistically processed. Results. In immunohistochemical study, the number of neurons expressing NeuN in the 1st group (LPS at a dose of 0.5 mg/kg/day) was 8226.9±336.94 cells per 1 mm2, in the 2nd group (LPS at a dose of 1 mg/kg/day) – 7889.4±211.83 cells per 1 mm2, in the 3rd group (LPS at a dose of 2 mg/kg/day) – 7039.7±580.42 cells per 1 mm2, in the control group – 9985.6±576.75 cells per 1 mm2. Immunofluorescent study revealed no difference between the samples. Conclusion. When LPS is administered intraperitoneally to mice for 4 days at doses of 0.5–2 mg/kg/day, the expression of NeuN, a marker of mature neurons, decreases. The data obtained can be used to create a model of age-related neurodegeneration.

About the Author

A. A. Venediktov
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Artem A. Venediktov – teaching assistant of Anatomy and Histology Department of I.M. Sechenov State Medical University

ul. Trubetskaya, 8, str. 2, Moscow, 119048



References

1. Gusel'nikova V.V., Korzhevskiy D.E. NeuN as a Neuronal Nuclear Antigen and Neuron Differentiation Marker. Acta naturae. 2015;7(2):42-47. Available at: https://actanaturae.ru/2075-8251/article/download/10490/pdf. (accessed: 19.06.2024)

2. Kudryavtseva V.A., Kuzmin E.A., Moiseeva A.V., et al. Molecular and morphological markers of neuronal death in acute cerebrovascular accidents. Sechenov Medical Journal. 2022;13(4):18-32. DOI: 10.47093/2218-7332.2022.13.4.18-32.

3. Bankhead P., Loughrey M.B., Fernández J.A., et al. QuPath: Open-source software for digital pathology image analysis. Science Reports. 2017;7(1):16878. DOI: 10.1038/s41598-017-17204-5.

4. Catorce M.N., Gevorkian G. LPS-induced Murine Neuroinflammation Model: Main Features and Suitability for Pre-clinical Assessment of Nutraceuticals. Current neuropharmacology. 2016;14(2),155-164. DOI: 10.2174/1570159x14666151204122017.

5. Dean J.M., van de Looij Y., Sizonenko S.V., et al. Delayed cortical impairment following lipopolysaccharide exposure in preterm fetal sheep. Annals of neurology. 2011; 0(5):846–856. DOI: 10.1002/ana.22480.

6. Festing M.F.W., Altman D.G. Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J. 2002;43(4):244–258. DOI: 10.1093/ilar.43.4.244 Erratum in: ILAR J. 2005;46(3):320.

7. Galea E., Graeber M.B. Neuroinflammation: The Abused Concept. ASN Neuro. 2023 JanDec;15:17590914231197523. DOI: 10.1177/17590914231197523.

8. Haley M.S., Maffei A. Versatility and Flexibility of Cortical Circuits. The Neuroscientist: a review journal bringing neurobiology, neurology and psychiatry. 2018;24(5):456-470. DOI: 10.1177/1073858417733720.

9. Harland M., Torres S., Liu, J., Wang X. Neuronal Mitochondria Modulation of LPS-Induced Neuroinflammation. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2020;40(8):1756-1765. DOI: 10.1523/JNEUROSCI.2324-19.2020.

10. Hirotsu A., Miyao M., Tatsumi K., Tanaka T. Sepsisassociated neuroinflammation in the spinal cord. PloS one. 2022;17(6):e0269924. DOI: 10.1371/journal.pone.0269924.

11. Li T., Yuan L., Zhao Y., et al. Blocking osteopontin expression attenuates neuroinflammation and mitigates LPS-induced depressive-like behavior in mice. Journal of affective disorders. 2023;330:83-93. DOI: 10.1016/j.jad.2023.02.105.

12. Mullen R.J., Buck C.R., Smith A.M. NeuN, a neuronal specific nuclear protein in vertebrates. Development (Cambridge, England). 1992;116(1):201-211. DOI: 10.1242/dev.116.1.201.

13. Paxinos G., Franklin K. Paxinos and Franklin's the Mouse Brain in Stereotaxic Coordinates. Elsevier Science. 2012. 360.

14. Roe K. An inflammation classification system using cytokine parameters. Scandinavian journal of immunology. 2021;93(2):e12970. DOI: 10.1111/sji.12970.

15. Sumbria R.K., Grigoryan M.M., Vasilevko V., et al. A murine model of inflammation-induced cerebral microbleeds. Journal of neuroinflammation. 2016;13(1):218. DOI: 10.1186/s12974-016-0693-5.

16. Venediktov A.A., Bushueva O.Y., Kudryavtseva V.A., et al. Closest horizons of Hsp70 engagement to manage neurodegeneration. Frontiers in molecular neuroscience. 2023;16:1230436. DOI: 10.3389/fnmol.2023.1230436.

17. Wang L., Ding J., Zhu C., et al. Semaglutide attenuates seizure severity and ameliorates cognitive dysfunction by blocking the NLR family pyrin domain containing 3 inflammasome in pentylenetetrazole kindled mice. International journal of molecular medicine. 2021;48(6):219. DOI: 10.3892/ijmm.2021.5052.

18. Wang Y., Ge X., Yu S., Cheng Q. Achyranthes bidentata polypeptide alleviates neurotoxicity of lipopolysaccharide-activated microglia via PI3K/Akt dependent NOX2/ROS pathway. Annals of translational medicine. 2021;9(20):1522. DOI: 10.21037/atm-21-4027.

19. Wolf H.K., Buslei R., Schmidt-Kastner R., et al. NeuN: a useful neuronal marker for diagnostic histopathology. The journal of histochemistry and cytochemistry: official journal of the Histochemistry Society. 1996;44(10):1167-1171. DOI: 10.1177/44.10.8813082.

20. Woodburn S.C., Bollinger J.L., Wohleb E.S. The semantics of microglia activation: neuroinflammation, homeostasis, and stress. Journal of neuroinflammation. 2021;18(1):258. DOI: 10.1186/s12974-021-02309-6.

21. Wu J. Y., Cho S. J., Descant K., et al. Mapping of neuronal and glial primary cilia contactome and connectome in the human cerebral cortex. Neuron. 2024;112(1):41-55. DOI: 10.1016/j.neuron.2023.09.032.

22. Yang J., Li Y., Bhalla A., et al. A novel co-culture model for investigation of the effects of LPS-induced macrophage-derived cytokines on brain endothelial cells. PloS one. 2023;18(7):e0288497. DOI: 10.1371/journal.pone.0288497.

23. Yang Y., Hao T., Yao X., et al. Crebanine ameliorates ischemia-reperfusion brain damage by inhibiting oxidative stress and neuroinflammation mediated by NADPH oxidase 2 in microglia. Phytomedicine: international journal of phytotherapy and phytopharmacology. 2023;120:155044. DOI: 10.1016/j.phymed.2023.155044.

24. Yu Q., Zhang L., Xu T., et al. Oligodendroglia-topericyte conversion after lipopolysaccharide exposure is gender-dependent. PloS one. 2024;19(8): e0308132. DOI: 10.1371/journal.pone.0308132.

25. Zhao J., Bi W., Xiao S., et al. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Scientific reports. 2019;9(1):5790. DOI: 10.1038/s41598-019-42286-8.


Review

For citations:


Venediktov A.A. Features of NeuN Expression in the Cingulate Cortex of the Cerebral Hemispheres of Mice After Administration of Escherichia Coli Lipopolysaccharide. Journal of Anatomy and Histopathology. 2024;13(4):22-28. (In Russ.) https://doi.org/10.18499/2225-7357-2024-13-4-22-28

Views: 152


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2225-7357 (Print)