Morphological Characteristics of the Ulna Fracture Zone in Rats Undergoing Therapy With Modified Mesenchymal Stem Cells in Experimental Osteoporosis
https://doi.org/10.18499/2225-7357-2024-13-3-49-59
Abstract
Osteoporosis is a progressive systemic disease characterized by a decrease in bone density. This leads to increased bone fragility and a higher likelihood of fractures. New approaches to cellular therapy have been developed for the effective treatment of this pathology, based on the use of modified osteophilic polymers with mesenchymal stem cells (MSCs) for local action on damaged bone areas. The aim of the study was to morphologically assess the effectiveness of modified osteophilic polymer MSCs on reparative osteogenesis processes during the post-traumatic period in animals with a fracture of the ulna and underlying osteoporosis. Material and methods. The experiment involved Wistar rats (females, n=40; 200–300 g, 3 months old). Osteoporosis was simulated by bilateral ovariectomy, and the fracture was simulated through diaphysis osteotomy of the ulna. All rats were randomly distributed into four groups: Group I (control, n=10; buffered solution); Group II (n=10; osteophilic polymer, 1 mg/ml); Group III (n=10; MSC suspension, 1×106); Group IV (n=10; modified osteophilic polymer MSCs, 1×106). The experiment results were evaluated in 1 and 6 months after the fracture. Results. MSCs were applied after exposure to the osteophilic polymer to restore the pool of osteoblast precursors in the fracture area of the ulna in experimental osteoporosis. In all animals, regeneration foci with varying degrees of structural and functional maturation of cellular and intercellular substrates were formed in the fracture area. The most pronounced processes of bone tissue restoration were observed with the use of modified osteophilic polymer MSCs. This is likely associated with the high concentration of modified osteophilic polymer MSCs and their retention in zones of damaged bone regeneration, subsequently stimulating osteogenesis. The paradigm of provisionality, as a universal model manifestating histogenesis and organogenesis, was utilized to gain a more comprehensive biological understanding and interpretation of the observed changes. Conclusion. MSCs applied after exposure to an osteophilic polymer significantly enhance the process of reparative osteogenesis in fractures of long bones in patients with estrogen-induced osteoporosis, thus making this technology promising for combined therapy.
About the Authors
F. S. OlzhayevKazakhstan
Farkhad S. Olzhaev– researcher of Laboratory of Bioengineering and Regenerative Medicine
Astana
V. A. Akulinin
Russian Federation
Viktor A. Akulinin – Doct. Sci. (Med.), Professor, Head of Histology, Cytology and Embryology Department
Omsk
B. A. Umbayev
Kazakhstan
Bauyrzhan A. Umbaev – PhD, leading researcher of Laboratory of Bioengineering and Regenerative Medicine
Astana
Y. I. Safarova
Kazakhstan
Yuliya I. Safarova – PhD, senior researcher of Laboratory of Bioengineering and Regenerative Medicine
Astana
S. S. Stepanov
Russian Federation
Sergei S. Stepanov – Doct. Sci. (Med.), senior researcher of Histology, Cytology and Embryology Department
Omsk
B. S. Gavrish
Russian Federation
Bogdan S. Gavrish – student
Omsk
Sh. N. Askarova
Kazakhstan
Sholpan N. Askarova – PhD, Head of Laboratory of Bioengineering and Regenerative Medicine
Astana
References
1. Borovikov V. Statistica. Iskusstvo analiza dannykh na komp'yutere. 2-oe izd. SaintPetersburg: Piter, 2003 (In Russ.).
2. Safarova Yu.I., Olzhayev F.S., Umbayev B.A., Erkebayeva A.S., et al. Perspective Approaches for Treatment of Low-Energy Injury Bone Tissue Injuries Using Bioengineering Methods and Cell Therapy. Science & Healthcare, 2019;21(5):68–80 (In Russ.).
3. Solov'ev G.S., Yanin V.L., Panteleev S.M., Vikhareva L.V., Istomina O.F., i dr. Printsip provizornosti kak universal'nyi mekhanizm evolyutsionirovaniya gisto- i organogenezov. Fundamental'nye issledovaniya. 2005;9:32–4 (In Russ.).
4. An S.H., Matsumoto T., Miyajima H., Nakahira A., Kim K.H., Imazato S. Porous zirconia/hydroxyapatite scaffolds for bone reconstruction. Dental Materials. 2012 Dec;28(12):1221–31. doi: 10.1016/j.dental.2012.09.001
5. Bastounis A., Langley T., Davis S., Paskins Z., Gittoes N., Leonardi-Bee J., et al. Assessing the Effectiveness of Bisphosphonates for the Prevention of Fragility Fractures: An Updated Systematic Review and Network Meta-Analyses. Repository@Nottingham (University of Nottingham). 2022 Mar 25;6(5):e10620. doi: 10.1002/jbm4.10620
6. Bhatnagar A., Kekatpure A.L. Postmenopausal Osteoporosis: A Literature Review. Cureus. 2022 Sep 20;14(9):e29367. doi: 10.7759/cureus.29367
7. Bone H.G., Hosking D., Devogelaer J.P., Tucci J.R., Emkey R.D., Tonino R.P., et al. Ten Years’ Experience with Alendronate for Osteoporosis in Postmenopausal Women. New England Journal of Medicine. 2004 Mar 18;350(12):1189–99. doi: 10.1056/NEJMoa030897
8. Chen L., Yang L., Yao M., Cui X.J., Xue C.C., Wang Y.J., et al. Biomechanical Characteristics of Osteoporotic Fracture Healing in Ovariectomized Rats: A Systematic Review. Dong Y, editor. PLOS ONE. 2016 Apr 7;11(4):e0153120. doi: 10.1371/journal.pone.0153120
9. Chen T., Yang T., Zhang W., Shao J. The therapeutic potential of mesenchymal stem cells in treating osteoporosis. Biological Research. 2021 Dec 20;54(1):42. doi: 10.1186/s40659-021-00366-y
10. D’Souza S., Murata H., Jose M.V., Askarova S., Yantsen Y., Andersen J.D., et al. Engineering of cell membranes with a bisphosphonate-containing polymer using ATRP synthesis for bone targeting. Biomaterials. 2014 Nov 1;35(35):9447–58. doi: 10.1016/j.biomaterials.2014.07.041
11. Donnaloja F., Jacchetti E., Soncini M., Raimondi M.T. Natural and Synthetic Polymers for Bone Scaffolds Optimization. Polymers. 2020 Apr 14;12(4):905. doi: 10.3390/polym12040905
12. Festing M.F.W., Altman D.G. Guidelines for the Design and Statistical Analysis of Experiments Using Laboratory Animals. ILAR Journal. 2002 Jan 1;43(4):244–58. doi: 10.1093/ilar.43.4.244
13. Giannoudis P., Tzioupis C., Almalki T., Buckley R. Fracture healing in osteoporotic fractures: Is it really different? Injury. 2007 Mar;38(1):S90–9. doi: 10.1016/j.injury.2007.02.014
14. Hernlund E., Svedbom A., Ivergard M., Compston J., Cooper C., Stenmark J., et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. Archives of Osteoporosis. 2013 Oct 11;8(1-2). doi: 10.1007/s11657-013-0136-1
15. James R., Deng M., Laurencin C.T., Kumbar S.G. Nanocomposites and bone regeneration. Frontiers of Materials Science. 2011 Nov 5;5(4):342–57. doi: 10.1007/s11706-011-0151-3
16. Jeon O.H., Elisseeff J. Orthopedic tissue regeneration: cells, scaffolds, and small molecules. Drug Delivery and Translational Research. 2015 Dec 1;6(2):105–20. doi: 10.1007/s13346-015-0266-7
17. Jiang Y., Zhang P., Zhang X., Lv L., Zhou Y. Advances in mesenchymal stem cell transplantation for the treatment of osteoporosis. Cell Proliferation. 2020 Nov 18;54(1):e12956. doi: 10.1111/cpr.12956
18. Kamrani R.S., Mehrpour S.R., Sorbi R., Aghamirsalim M., Farhadi L. Treatment of nonunion of the forearm bones with posterior interosseous bone flap. Journal of Orthopaedic Science. 2013 Jul;18(4):563–8. doi: 10.1007/s00776-013-0395-0
19. Li H., Xiao Z., Quarles L.D., Li W. Osteoporosis: Mechanism, Molecular Target, and Current Status on Drug Development. Current Medicinal Chemistry. 2020 Mar 30;27(8):1489–507. doi: 10.2174/0929867327666200330142432
20. Nakase T., Fujii M., Myoui A., Tamai N., Hayaishi Y., Ueda T., et al. Use of hydroxyapatite ceramics for treatment of nonunited osseous defect after open fracture of lower limbs. Archives of Orthopaedic and Trauma Surgery. 2009 Jun 23;129(11):1539– 47. doi: 10.1007/s00402-009-0914-9
21. Patel D., Wairkar S. Bone regeneration in osteoporosis: opportunities and challenges. Drug Delivery and Translational Research. 2022 Aug 22;13(2):419–32. doi: 10.1007/s13346-022-01222-6
22. Pouresmaeili F., Kamali Dehghan B., Kamarehei M., Yong Meng G. A comprehensive overview on osteoporosis and its risk factors. Therapeutics and Clinical Risk Management. 2018;14(1):2029–49. doi: 10.2147/TCRM.S138000
23. Rudiansyah M., El-Sehrawy A.A., Ahmad I., Terefe E.M., Abdelbasset W.K., Bokov D.O., et al. Osteoporosis treatment by mesenchymal stromal/stem cells and their exosomes: Emphasis on signaling pathways and mechanisms. Life Sciences. 2022 Oct 1;306:120717. doi: 10.1016/j.lfs.2022.120717
24. Safarova Y., Olzhayev F., Umbayev B., Tsoy A., Hortelano G., Tokay T., et al. Mesenchymal Stem Cells Coated with Synthetic Bone-Targeting Polymers Enhance Osteoporotic Bone Fracture Regeneration. Bioengineering. 2020 Oct 12;7(4):125. doi: 10.3390/bioengineering7040125
25. Safarova Y., Umbayev B., Hortelano G., Askarova S. Mesenchymal stem cells modifications for enhanced bone targeting and bone regeneration. Regenerative Medicine. 2020 Apr;15(4):1579–94. doi: 10.2217/rme-2019-0081
26. Singh J., Onimowo J.O., Khan W.S. Bone marrow derived stem cells in trauma and orthopaedics: A review of the current trend. Curr. Stem Cell Res. 2015; 10(1):37-42. doi: 10.2174/1574888x09666140710105141
27. Teitelbaum S.L. Stem cells and osteoporosis therapy. Cell Stem Cell. 2010 Nov 5;7(5):553-4. doi: 10.1016/j.stem.2010.10.004
28. Tu K.N., Lie J.D., Wan C.K.V., Cameron M., Austel A.G., Nguyen J.K., Van K., Hyun D. Osteoporosis: A Review of Treatment Options. P T. 2018 Feb; 43(2):92-104.
29. Weigert M., Schmidt U. Nuclei Instance Segmentation and Classification in Histopathology Images with Stardist. 2022 IEEE International Symposium on Biomedical Imaging Challenges (ISBIC). 2022 Mar 28. doi: 10.1109/ISBIC56247.2022.9854534
30. Wells G.A., Cranney A., Peterson J., Boucher M., Shea B., Welch V., et al. Risedronate for the primary and secondary prevention of osteoporotic fractures in postmenopausal women. Cochrane Database of Systematic Reviews. 2008 Jan 23;(1):CD004523. doi: 10.1002/14651858.cd004523.pub3
31. Zeng Y., Yang Y., Wang J., Meng G. The Healing and therapeutic effects of perioperative bisphosphonate use in patients with fragility fractures: metaanalysis of 19 clinical trials. Osteoporosis International. 2024 Aug 8. doi: 10.1007/s00198-024-07191-5
Review
For citations:
Olzhayev F.S., Akulinin V.A., Umbayev B.A., Safarova Y.I., Stepanov S.S., Gavrish B.S., Askarova Sh.N. Morphological Characteristics of the Ulna Fracture Zone in Rats Undergoing Therapy With Modified Mesenchymal Stem Cells in Experimental Osteoporosis. Journal of Anatomy and Histopathology. 2024;13(3):49-59. (In Russ.) https://doi.org/10.18499/2225-7357-2024-13-3-49-59