Preview

Journal of Anatomy and Histopathology

Advanced search

Clinical Aspects of Connexins 37, 40, 43, 45 Expression in the Embryonic and Adult Kidneys

https://doi.org/10.18499/2225-7357-2023-12-3-96-102

Abstract

Nowdays,  there  is  a  wide  variety  of  judgments  regarding  the  specific  expression  of  some forms of connexins (Cx) in the renin apparatus of the embryonic and adult kidneys. Establishing the exact intrarenal localization of Cx 40, 37, 43, 45 is a prerequisite for understanding their functional role in normal renal organogenesis,  as  well  as  in  maintaining  fluid  homeostasis  and  controlling renin  secretion.  At  8–10 weeks  of embryonic development, the expression of various Cx is observed in the epithelium of blood vessels and renal tubules, as well as in the region of the renal renin apparatus, but with different patterns of expression and intensity over time. During embryogenesis, the expression of Cx 40 is higher than that of Cx 43, 37, and 45. In the postnatal period, the expression of Cx 40 decreases, while the expression of others increases. Cx 40 is involved in the  formation  of  the renin  apparatus  in  the  developing  kidney,  while  Cx 37,  Cx 43,  and  Cx 45  are  involved  in signaling important for postnatal maintenance of kidney function and blood pressure control. Knockout Cx 45 is a lethal mutation that leads to impaired differentiation of smooth muscle tissue of arterioles. On the contrary, the deletion of individual genes Cx 37, 40 and 43 has little effect on renal organogenesis, probably due to the redundancy  and  interchangeability  of  various  connexin  isoforms.  Experimental  studies  in  the  adult  kidney demonstrate  that arterial endothelial  cells express Cx 40  and Cx 37 and, to a lesser extent, Cx 43, while smooth muscle  cells express Cx 45. The cells of the renin apparatus are characterized by the expression of Cx 37, Cx 40, Cx 43 and Cx 45, with the highest content of Cx 40, especially in juxtaglomerular cells. Adequate and coordinated work of Cx is crucial for the regulation of renal hemodynamics and renin secretion in nephrology. The use of specific connexin-mimetic peptides may lead to the development of more effective methods for controlling renin secretion.

About the Authors

E. Yu. Shapovalova
V. I. Vernadsky Crimean Federal University
Russian Federation

Elena Yu. Shapovalova – Doct. Sci. (Med.), Professor, Head of the Department of Histology and Embryology of Institute “S.I. Georgievsky Medical Academy”

bul'var Lenina, 5/7, Simferopol, 295051



L. A. Kutuzova
V. I. Vernadsky Crimean Federal University
Russian Federation

Liliana A. Kutuzova – Cand. Sci. (Med.), Associate Professor of the Department of Histology and Embryology of Institute “S.I. Georgievsky Medical Academy"

Simferopol



S. A. Vasilenko
V. I. Vernadsky Crimean Federal University
Russian Federation

Svetlana A. Vasilenko – teaching assistant of the Department of Histology and Embryology of Institute “S.I. Georgievsky Medical Academy”

Simferopol



A. G. Baranovskii
V. I. Vernadsky Crimean Federal University
Russian Federation

leksei G. Baranovskii – teaching assistant of the Department of Histology and Embryology of Institute “S.I. Georgievsky Medical Academy”

Simferopol



References

1. Vasilenko SA, Kutuzova LA, Lugin IA, Kharchenko SV, Shapovalova YeYu. Morphological Characteristic of Organogenesis of Rat Kidney Developed During the Blockade of Ca2+ L-Type Channels. Morphology. 2020;157(2-3):44–5. (In Russ.)

2. Vasilenko SA, Kutuzova LA, Lugin IA, Harchenko SV, Shapovalova EY. Correlation between the Protein Synthesis in the Metanephros Cells and the Blockade of Ca2+ Ions Passage Through Cells L-Type Channels. Morphology. 2019;156(6):87. (In Russ.)

3. Chulkov VS, Martynov AI, Kokorin VA. Hypertension in pregnancy: controversial issues of national and international guidelines. Russian Journal of Cardiology. 2021 Jan 11;25(4S):4181. doi: 10.15829/1560-4071-2020-4181

4. Broeker KAE, Schrankl J, Fuchs MAA, Kurtz A. Flexible and multifaceted: the plasticity of reninexpressing cells. Pflügers Archiv - European Journal of Physiology. 2022 May 5;474(8):799– 812. doi: 10.1007/s00424-022-02694-8

5. Endlich K, Loutzenhiser R. Tubuloglomerular feedback, renal autoregulation, and renal protection. Oxford University Press; 2015. doi: 10.1093/med/9780199592548.003.0209

6. Evans WH, Boitano S. Connexin mimetic peptides: specific inhibitors of gap-junctional intercellular communication. Biochemical Society Transactions. 2001 Aug 1;29(4):606–12. doi: 10.1042/bst0290606

7. Facemire CS, Gurley SB. Minding the gap: connexin 40 at the heart of renin release. Journal of the American Society of Nephrology. 2011 Jun;22(6):985–6. doi: 10.1681/ASN.2011040395

8. Geis L, Franz-Fabian Boudriot, Wagner C. Connexin mRNA distribution in adult mouse kidneys. Pflügers Archiv: European Journal of Physiology. 2021 Aug 7;473(11):1737–47. doi: 10.1007/s00424-021-02608-0

9. Gómez GI, Velarde V, Sáez JC. Connexin-Based Channels and RhoA/ROCK Pathway in Angiotensin II-Induced Kidney Damage. IntechOpen eBooks. 2020 Aug 19. doi: 10.5772/intechopen.87040

10. Haefliger JA, Krattinger N, Martin D, Pedrazzini T, Capponi A, Döring B, Plum A, Charollais A, Willecke K, Meda P. Connexin43-dependent mechanism modulates renin secretion and hypertension. Journal of Clinical Investigation. 2006 Feb;116(2):405-13. doi: 10.1172/JCI23327

11. Hanner F, Sorensen CM, Holstein-Rathlou NH, Peti-Peterdi J. Connexins and the kidney. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2010 May;298(5):R1143–55. Doi 10.1152/ajpregu.00808.2009

12. King DR, Sedovy MW, Leng X, Xue J, Lamouille S, Koval M, et al. Mechanisms of Connexin Regulating Peptides. International Journal of Molecular Sciences. 2021 Sep 22;22(19):10186. doi: 10.3390/ijms221910186

13. Kosovic I, Filipovic N, Benzon B, Bocina I, Glavina Durdov M, Vukojevic K, et al. Connexin Signaling in the Juxtaglomerular Apparatus (JGA) of Developing, Postnatal Healthy and Nephrotic Human Kidneys. International Journal of Molecular Sciences. 2020 Nov 6;21(21):8349–9. doi: 10.3390/ijms21218349

14. Kurtz L, Janssen-Bienhold U, Kurtz A, Wagner C. Connexin Expression in Renin-Producing Cells. Journal of the American Society of Nephrology. 2008 Dec 10;20(3):506–12. doi: 10.1681/ASN.2008030252

15. Kutuzova LA, Vasilenko SA, Sheverdina SV. Histomorphological Role of Expression of Connexins 40, 37, 43, 45 in an Embryonic and Adult Kidney in an Experiment. Proceedings of the International University Scientific Forum “Practice Oriented Science: UAE – RUSSIA – INDIA”. 2023;24–31. doi: 10.34660/INF.2023.50.24.139

16. Lozić M, Filipović N, Jurić M, Kosović I, Benzon B, Šolić I, et al. Alteration of Cx37, Cx40, Cx43, Cx45, Panx1, and Renin Expression Patterns in Postnatal Kidneys of Dab1-/- (yotari) Mice. International Journal of Molecular Sciences. 2021 Jan 28;22(3):1284. doi: 10.3390/ijms22031284

17. Lübkemeier I, Machura K, Kurtz L, Neubauer B, Dobrowolski R, Schweda F, et al. The Connexin40 A96S Mutation Causes Renin-Dependent Hypertension. Journal of the American Society of Nephrology. 2011 May 19;22(6):1031–40. doi: 10.1681/ASN.2010101047

18. Møller S, Jacobsen JCB, Holstein-Rathlou NH, Sorensen CM. Lack of Connexins 40 and 45 Reduces Local and Conducted Vasoconstrictor Responses in the Murine Afferent Arterioles. Frontiers in Physiology. 2020 Aug 7;11:961. doi: 10.3389/fphys.2020.00961

19. Møller SE, Brings C, Thomas Hartig Braunstein, Niels-Henrik Holstein-Rathlou, Charlotte Mehlin Sørensen. Influence of connexin45 on renal autoregulation. American Journal of Physiology-renal Physiology. 2020 Mar 1;318(3):F732–40. doi: 10.1152/ajprenal.00185.2019

20. Prakoura N, Kavvadas P, Chadjichristos Christos E. Connexin 43: a New Therapeutic Target Against Chronic Kidney Disease. Cellular Physiology and Biochemistry. 2018;49(3):998– 1009. doi: 10.1159/000493230

21. Price G, Potter J, Williams BM, Cliff CL, Squires PE, Hills CE. Connexin-mediated cell communication in the kidney: A potential therapeutic target for future intervention of diabetic kidney disease? Experimental Physiology. 2020 Jan 15;105(2):219–29. doi: 10.1113/EP087770

22. Shapovalova YYu, Kutuzova LA, Kharchenko SV, Vasilenko SA. Blocking l-type voltage-gated calcium ion channels changes the intensity of protein synthesis in metanephric cells International Journal of Biomedicine. 2019;9(2):150–4.

23. Stoessel A, Himmerkus N, Bleich M, Bachmann S, Theilig F. Connexin 37 is localized in renal epithelia and responds to changes in dietary salt intake. American Journal of Physiology-renal Physiology. 2010 Jan 1;298(1):F216–23. doi: 10.1152/ajprenal.00295.2009

24. Takenaka T, Inoue T, Kanno Y, Okada H, Meaney KR, Hill CE, et al. Expression and role of connexins in the rat renal vasculature. Kidney Int. 2008 Feb 2;73(4):415–22. doi: 10.1038/sj.ki.5002673

25. Wagner C, de Wit C, Kurtz L, GruünbergerC, Kurtz A, Schweda F. Connexin40 Is Essential for the Pressure Control of Renin Synthesis and Secretion. Circulation Research. 2007 Mar 2;100(4):556–63. Doi 10.1161/01.RES.0000258856.19922.45

26. Wagner C, Jobs A, Schweda F, Kurtz L, Kurt B, Lopez MLS, et al. Selective deletion of Connexin 40 in renin-producing cells impairs renal baroreceptor function and is associated with arterial hypertension. Kidney International. 2010 Oct;78(8):762–8. doi: 10.1038/ki.2010.257

27. Willebrords J, Maes M, Crespo Yanguas S, Vinken M. Inhibitors of connexin and pannexin channels as potential therapeutics. Pharmacology & Therapeutics. 2017 Dec;180:144–60. doi: 10.1016/j.pharmthera.2017.07.001

28. Wörsdörfer P, Wagner N, Ergün S. The role of connexins during early embryonic development: pluripotent stem cells, gene editing, and artificial embryonic tissues as tools to close the knowledge gap. Histochemistry and Cell Biology. 2018 Jul 23;150(4):327–39. doi: 10.1007/s00418-018-1697-2

29. Xue J, Thomas L, Dominguez Rieg JA, Fenton RA, Rieg T. Genetic deletion of connexin 37 causes polyuria and polydipsia. Theilig F, editor. PLOS ONE. 2020 Dec 17;15(12):e0244251. doi: 10.1371/journal.pone.0244251

30. Zhao Y, Li G, Wang Y, Liu Z. Alteration of Connexin43 expression in a rat model of obesity-related glomerulopathy. Experimental and Molecular Pathology. 2018 Feb 1;104(1):12–8. doi: 10.1016/j.yexmp.2017.11.017


Review

For citations:


Shapovalova E.Yu., Kutuzova L.A., Vasilenko S.A., Baranovskii A.G. Clinical Aspects of Connexins 37, 40, 43, 45 Expression in the Embryonic and Adult Kidneys. Journal of Anatomy and Histopathology. 2023;12(3):96-102. (In Russ.) https://doi.org/10.18499/2225-7357-2023-12-3-96-102

Views: 274


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2225-7357 (Print)