Морфофункциональная организация субфорникального органа
https://doi.org/10.18499/2225-7357-2023-12-1-9-19
Аннотация
Настоящий обзор содержит данные литературы, освещающие структуру и функции субфорникального органа (СФО). СФО принадлежит к сенсорной группе образований, расположившихся вокруг III и IV желудочков и составляющих циркумвентрикулярную систему мозга. Несмотря на малые размеры, СФО имеет четыре отдела, которые отличаются друг от друга особенностями цито-, миело- и ангиоархитектоники. Особенности строения гематоэнцефалического барьера в СФО позволяют многим веществам напрямую контактировать с его клеточными элементами. Отличительной чертой СФО является то, что циркулирующие вещества могут пребывать в капиллярах в течение необычно длительного времени. Периваскулярные пространства, располагающиеся вокруг капилляров I и III типов, в виде тонких каналов пронизывают орган и обеспечивают веществам, находящимся в интерстициальной жидкости, обширную площадь поверхности для взаимодействия с рецепторным полем. Характерной особенностью СФО можно считать танициты, чьи переплетающиеся отростки простираются по всему органу и образуют множественные контакты с нейронами и сосудистым руслом. СФО является важным звеном в регуляции гомеостаза. Он принимает участие в регуляции артериального давления и питьевого поведения, осуществляет контроль водно-электролитного баланса и энергетического обмена, а также выступает важным звеном нейроиммунных взаимодействий. Такие структурно-функциональные особенности СФО делают его перспективным объектом нейробиологических исследований.
Об авторах
Д. А. СоколовРоссия
Соколов Дмитрий Александрович – канд. мед. наук, доцент; доцент кафедры нормальной анатомии человека
ул. Студенческая, 10, Воронеж, 394036
Н. Т. Алексеева
Россия
Алексеева Наталия Тимофеевна – д-р мед. наук, профессор, зав. кафедрой нормальной анатомии человека
ул. Студенческая, 10, Воронеж, 394036
Д. Б. Никитюк
Россия
Никитюк Дмитрий Борисович – д-р мед. наук, профессор, акад. РАН, директор
Москва
С. В. Клочкова
Россия
Клочкова Светлана Валерьевна – д-р мед. наук, профессор кафедра анатомии человека
Москва
Е. Л. Лушникова
Россия
Лушникова Елена Леонидовна – д-р. биол. наук, профессор, директор Института молекулярной патологии и патоморфологии
Новосибирск
Список литературы
1. Разенкова В.А., Коржевский Д.Э. Катехоламинергические структуры субфорникального органа крысы. Цитология. 2022;64(4): 372–380.
2. Ahmed A-SF, Dai L, Ho W, Ferguson AV, Sharkey KA. The subfornical organ: a novel site of action of cholecystokinin. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2014 Mar 1;306(5):R363–73. doi: 10.1152/ajpregu.00462.2013
3. Akert K, Potter HD, Anderson JW. The subfornical organ in mammals. I. Comparative and topographical anatomy. The Journal of Comparative Neurology. 1961 Feb;116(1):1–13. doi: 10.1002/cne.901160102
4. Anderson JW, Smith PM, Ferguson AV. Subfornical organ neurons projecting to paraventricular nucleus: whole-cell properties. Brain Research. 2001 Dec;921(1-2):78–85. doi: 10.1016/s0006-8993(01)03093-1
5. Babic T, Roder S, Ciriello J. Direct projections from caudal ventrolateral medullary depressor sites to the subfornical organ. Brain Research. 2004 Apr;1003(1-2):113–21. doi: 10.1016/j.brainres.2003.12.0293
6. Baird A. Fibroblast growth factors: activities and significance of non-neurotrophin neurotrophic growth factors. Current Opinion in Neurobiology. 1994 Jan;4(1):78–86. doi: 10.1016/0959-4388(94)90035-3
7. Benz F, Liebner S. Structure and Function of the Blood-Brain Barrier (BBB). Handbook of Experimental Pharmacology [Internet]. 2020 Nov 29 [cited 2021 Dec 16]; Available from: https://pubmed.ncbi.nlm.nih.gov/33249527/ doi: 10.1007/164_2020_404
8. Borges BC, da Rocha MJA. Participation of the subfornical nucleus in hypothalamicneurohypophyseal axis activation during the early phase of endotoxic shock. Neuroscience Letters. 2006 Aug;404(1-2):227–31. doi: 10.1016/j.neulet.2006.05.052
9. Calvo CF, Fontaine RH, Soueid J, Tammela T, Makinen T, Alfaro-Cervello C, et al. Vascular endothelial growth factor receptor 3 directly regulates murine neurogenesis. Genes & Development. 2011 Apr 15;25(8):831–44. doi: 10.1101/gad.615311
10. Cancelliere NM, Ferguson AV. Subfornical organ neurons integrate cardiovascular and metabolic signals. American Journal of Physiology- Regulatory, Integrative and Comparative Physiology. 2017 Feb 1;312(2):R253–62. doi: 10.1152/ajpregu.00423.2016
11. Castañeyra-Perdomo A, Meyer G, Heylings DJ. Early development of the human area postrema and subfornical organ. The Anatomical Record. 1992 Apr;232(4):612–9. doi: 10.1002/ar.1092320416
12. Cerqueira DR, Ferreira HS, Moiteiro ALBB, Fregoneze JB. Effects of interleukin-1 beta injections into the subfornical organ and median preoptic nucleus on sodium appetite, blood pressure and body temperature of sodium-depleted rats. Physiology & Behavior. 2016 Sep;163:149–60. doi: 10.1016/j.physbeh.2016.05.003
13. Chen HH, Chien CH, Liu HM. Correlation between angiogenesis and basic fibroblast growth factor expression in experimental brain infarct. Stroke. 1994 Aug;25(8):1651–7. doi: 10.1161/01.str.25.8.1651
14. Choi DW, Rothman SM. The Role of Glutamate Neurotoxicity in Hypoxic-Ischemic Neuronal Death. Annual Review of Neuroscience. 1990 Mar;13(1):171–82. doi: 10.1146/annurev.ne.13.030190.001131
15. Chong W, Kim SN, Han SK, Lee SY, Ryu PD. Low Non-NMDA Receptor Current Density as Possible Protection Mechanism from Neurotoxicity of Circulating Glutamate on Subfornical Organ Neurons in Rats. The Korean Journal of Physiology & Pharmacology. 2015;19(2):177. doi: 10.4196/kjpp.2015.19.2.177
16. Ciriello J. Caudal ventrolateral medulla mediates baroreceptor afferent inputs to subfornical organ angiotensin II responsive neurons. Brain Research. 2013 Jan;1491:127–35. doi: 10.1016/j.brainres.2012.10.064
17. Coble JP, Grobe JL, Johnson AK, Sigmund CD. Mechanisms of brain renin angiotensin systeminduced drinking and blood pressure: importance of the subfornical organ. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology [Internet]. 2015 Feb 15;308(4):R238–49. doi: 10.1152/ajpregu.00486.2014
18. Cooper SG, Trivedi DP, Yamamoto R, Worker CJ, Feng CY, Sorensen JT, et al. Increased (pro)renin receptor expression in the subfornical organ of hypertensive humans. American Journal of Physiology-Heart and Circulatory Physiology. 2018 Apr 1;314(4):H796–804. doi: 10.1152/ajpheart.00616.2017
19. Dellmann HD. Structure of the subfornical organ: A review. Microscopy Research and Technique. 1998 Apr 15;41(2):85–97. doi: 10.1002/(sici)1097-0029(19980415)41:2<85::aid-jemt1>3.0.co;2-p
20. Duan P-G, Kawano H, Masuko S. Collateral projections from the subfornical organ to the median preoptic nucleus and paraventricular hypothalamic nucleus in the rat. Brain Research. 2008 Mar;1198:68–72. doi: 10.1016/j.brainres.2008.01.035
21. Duvernoy HM, Risold P-Y. The circumventricular organs: an atlas of comparative anatomy and vascularization. Brain Research Reviews [Internet]. 2007 Nov 1 [cited 2021 Jan 22];56(1):119–47. doi: 10.1016/j.brainresrev.2007.06.002
22. Ferguson AV. Angiotensinergic Regulation of Autonomic and Neuroendocrine Outputs: Critical Roles for the Subfornical Organ and Paraventricular Nucleus. Neuroendocrinology. 2009;89(4):370–6. doi: 10.1159/000211202
23. Frautschy SA, Gonzalez M, Martinez Murillo R, Carceller F, Cuevas P, Baird A. Expression of Basic Fibroblast Growth Factor and Its Receptor in the Rat Subfornical Organ. Neuroendocrinology. 1991;54(1):62–7. doi: 10.1159/000125852
24. Furube E, Morita M, Miyata S. Characterization of neural stem cells and their progeny in the sensory circumventricular organs of adult mouse. Cell and Tissue Research. 2015 May 21;362(2):347–65. doi: 10.1007/s00441-015-2201-0
25. Ganong WF. Circumventricular Organs: Definition And Role In The Regulation Of Endocrine And Autonomic Function. Clinical and Experimental Pharmacology and Physiology. 2000 May;27(5-6):422–7.
26. Goto M, Canteras NS, Burns G, Swanson LW. Projections from the subfornical region of the lateral hypothalamic area. The Journal of Comparative Neurology. 2005;493(3):412–38. doi: 10.1002/cne.20764
27. Gross PM. Morphology and physiology of capillary systems in subregions of the subfornical organ and area postrema. Canadian Journal of Physiology and Pharmacology. 1991 Jul 1;69(7):1010–25. doi: 10.1139/y91-152
28. Hernesniemi J, Kawana E, Bruppacher H, Sandri C. Afferent connections of the subfornical organ and of the supraoptic crest. Cells Tissues Organs. 1972;81(3):321–36. doi: 10.1159/000143768
29. Hicks A-I, Kobrinsky S, Zhou S, Yang J, Prager-Khoutorsky M. Anatomical Organization of the Rat Subfornical Organ. Frontiers in Cellular Neuroscience. 2021 Sep 6;15. doi: 10.3389/fncel.2021.691711
30. Hindmarch CCT, Ferguson AV. Physiological roles for the subfornical organ: a dynamic transcriptome shaped by autonomic state. The Journal of Physiology. 2015 Oct 13;594(6):1581–9. doi: 10.1113/jp270726
31. Hiyama TY, Noda M. Sodium sensing in the subfornical organ and body-fluid homeostasis. Neuroscience Research. 2016 Dec;113:1–11. doi: 10.1016/j.neures.2016.07.007
32. Horwath JA, Hurr C, Butler SD, Guruju M, Cassell MD, Mark AL, et al. Obesity-induced hepatic steatosis is mediated by endoplasmic reticulum stress in the subfornical organ of the brain. JCI Insight. 2017 Apr 20;2(8).
33. Hourai A, Miyata S. Neurogenesis in the circumventricular organs of adult mouse brains. Journal of Neuroscience Research. 2013 Mar 22;91(6):757–70. doi: 10.1002/jnr.23206
34. Kawano H, Masuko S. Region-specific projections from the subfornical organ to the paraventricular hypothalamic nucleus in the rat. Neuroscience. 2010 Sep;169(3):1227–34. doi: 10.1016/j.neuroscience.2010.05.065
35. Kawano H, Masuko S. Tyrosine hydroxylaseimmunoreactive projections from the caudal ventrolateral medulla to the subfornical organ in the rat. Brain Research. 2001 Jun;903(1-2):154–61.
36. Kiecker C. The origins of the circumventricular organs. Journal of Anatomy. 2017 Dec 27;232(4):540–53. doi: 10.1111/joa.12771
37. Mark MH, Farmer PM. The human subfornical organ: an anatomic and ultrastructural study. Ann Clin Lab Sci. 1984 Nov-Dec;14(6):427-42. PMID: 6391361.
38. Matsuda T, Hiyama TY, Niimura F, Matsusaka T, Fukamizu A, Kobayashi K, et al. Distinct neural mechanisms for the control of thirst and salt appetite in the subfornical organ. Nature Neuroscience. 2016 Dec 19;20(2):230–41. doi: 10.1038/nn.4463
39. Medeiros N, Dai L, Ferguson AV. Glucoseresponsive neurons in the subfornical organ of the rat—a novel site for direct CNS monitoring of circulating glucose. Neuroscience. 2012 Jan;201:157–65. doi: 10.1016/j.neuroscience.2011.11.028
40. McKinley MJ, Denton DA, Ryan PJ, Yao ST, Stefanidis A, Oldfield BJ. From sensory circumventricular organs to cerebral cortex: Neural pathways controlling thirst and hunger. Journal of Neuroendocrinology. 2019 Mar 14;e12689.
41. McKinley MJ, McAllen RM, Davern P, Giles ME, Penschow J, Sunn N, et al. The Sensory Circumventricular Organs of the Mammalian Brain. Advances in Anatomy, Embryology and Cell Biology. Berlin, Heidelberg: Springer Berlin Heidelberg; 2003. doi: 10.1007/978-3-642-55532-9
42. Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A. Neural Stem Cells Confer Unique Pinwheel Architecture to the Ventricular Surface in Neurogenic Regions of the Adult Brain. Cell Stem Cell. 2008 Sep;3(3):265–78. doi: 10.1016/j.stem.2008.07.004
43. Miyahara N, Ono K, Hitomi S, Hirase M, Inenaga K. Dopamine modulates neuronal excitability preand post-synaptically in the rat subfornical organ. Brain Research. 2012 Apr;1447:44–52. doi: 10.1016/j.brainres.2012.01.063
44. Morita-Takemura S, Nakahara K, Hasegawa-Ishii S, Isonishi A, Tatsumi K, Okuda H, et al. Responses of perivascular macrophages to circulating lipopolysaccharides in the subfornical organ with special reference to endotoxin tolerance. Journal of Neuroinflammation. 2019 Feb 14;16(1). Doi: 10.1186/s12974-019-1431-6
45. Morita-Takemura S, Nakahara K, Tatsumi K, Okuda H, Tanaka T, Isonishi A, et al. Changes in endothelial cell proliferation and vascular permeability after systemic lipopolysaccharide administration in the subfornical organ. Journal of Neuroimmunology. 2016 Sep;298:132–7. doi: 10.1016/j.jneuroim.2016.06.011
46. Noda M. The Subfornical Organ, a Specialized Sodium Channel, and the Sensing of Sodium Levels in the Brain. The Neuroscientist. 2006 Feb;12(1):80–91. doi: 10.1177/1073858405279683
47. Ong WY, Satish RL, Herr DR. ACE2, Circumventricular Organs and the Hypothalamus, and COVID-19. NeuroMolecular Medicine. 2022 Apr 22;24(4):363–73. doi: 10.1007/s12017-022-08706-1
48. Ono K, Kai A, Honda E, Inenaga K. Hypocretin-1/orexin-A activates subfornical organ neurons of rats. NeuroReport. 2008 Jan;19(1):69–73. doi: 10.1097/wnr.0b013e3282f32d64
49. Pesini P, Rois JL, Menendez L, Vidal S. The Neonatal Treatment of Rats with Monosodium Glutamate Induces Morphological Changes in the Subfornical Organ. Anatomia, Histologia, Embryologia: Journal of Veterinary Medicine Series C. 2004 Oct;33(5):273–7. doi: 10.1111/j.1439-0264.2004.00547.x
50. Pócsai K, Kálmán M. Glial and Perivascular Structures in the Subfornical Organ. Journal of Histochemistry & Cytochemistry. 2015 Feb 11;63(5):367–83. doi: 10.1369/0022155415575027
51. Shaver SW, Sposito NM, Gross PM. Quantitative fine structure of capillaries in subregions of the rat subfornical organ. The Journal of Comparative Neurology. 1990 Apr 1;294(1):145–52. doi: 10.1002/cne.902940111
52. Smith PM, Chambers AP, Price CJ, Ho W, Hopf C, Sharkey KA, et al. The subfornical organ: a central nervous system site for actions of circulating leptin. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2009 Mar;296(3):R512–20. doi: 10.1152/ajpregu.90858.2008
53. Smith PM, Rozanski G, Ferguson AV. Acute electrical stimulation of the subfornical organ induces feeding in satiated rats. Physiology & Behavior. 2010 Mar;99(4):534–7. doi: 10.1016/j.physbeh.2010.01.013
54. Swiderski RE, Agassandian K, Ross JL, Bugge K, Cassell MD, Yeaman C. Structural defects in cilia of the choroid plexus, subfornical organ and ventricular ependyma are associated with ventriculomegaly. Fluids and Barriers of the CNS. 2012 Oct 9;9(1). Doi: 10.1186/2045-8118-9-22
55. Szathmari A, Jouvet A, Mottolese C, Champier J, Fèvre Montange M. Anatomical, molecular and pathological consideration of the circumventricular organs. Neurochirurgie. 2015 Apr;61(2-3):90–100. doi: 10.1016/j.neuchi.2013.04.006
56. Tanaka J. Activation of cholinergic pathways from the septum to the subfornical organ area under hypovolemic condition in rats. Brain Research Bulletin. 2003 Sep;61(5):497–504. doi 10.1016/s0361-9230(03)00186-2
57. Tanaka J, Hayashi Y, Shimamune S, Nomura M. Ascending pathways from the nucleus of the solitary tract to the subfornical organ in the rat. Brain Research. 1997 Nov;777(1-2):237–41. doi 10.1016/s0006-8993(97)01211-0
58. Wei S-G, Zhang Z-H, Beltz TG, Yu Y, Johnson AK, Felder RB. Subfornical Organ Mediates Sympathetic and Hemodynamic Responses to Blood-Borne Proinflammatory Cytokines. Hypertension. 2013 Jul;62(1):118–25. doi: 10.1161/hypertensionaha.113.01404
59. Wei S-G, Yu Y, Zhang Z-H, Felder RB. Proinflammatory Cytokines Upregulate Sympathoexcitatory Mechanisms in the Subfornical Organ of the Rat. Hypertension. 2015 May;65(5):1126–33. doi: 10.1161/hypertensionaha.114.05112
60. Weindl A, Bufler J, Winkler B, Arzberger T, Hatt H. Chapter 35: Neurotransmitters and receptors in the subfornical organ. Immunohistochemical and electrophysiological evidence. Progress in Brain Research. 1992;261–9. doi: 10.1016/s0079-6123(08)62342-0
61. Xu Z, Pekarek E, Ge J, Yao J. Functional relationship between subfornical organ cholinergic stimulation and cellular activation in the hypothalamus and AV3V region. Brain Research. 2001 Dec;922(2):191–200. doi: 10.1016/s0006-8993(01)03166-3
62. Young CN, Morgan DA, Butler SD, Rahmouni K, Gurley SB, Coffman TM, et al. Angiotensin type 1a receptors in the forebrain subfornical organ facilitate leptin-induced weight loss through brown adipose tissue thermogenesis. Molecular Metabolism. 2015 Apr;4(4):337–43. doi: 10.1016/j.molmet.2015.01.007
Рецензия
Для цитирования:
Соколов Д.А., Алексеева Н.Т., Никитюк Д.Б., Клочкова С.В., Лушникова Е.Л. Морфофункциональная организация субфорникального органа. Журнал анатомии и гистопатологии. 2023;12(1):9-19. https://doi.org/10.18499/2225-7357-2023-12-1-9-19
For citation:
Sokolov D.A., Alexeeva N.T., Nikityuk D.B., Klochkova S.V., Lushnikova E.L. Morphofunctional Organization of the Subfornical Organ. Journal of Anatomy and Histopathology. 2023;12(1):9-19. (In Russ.) https://doi.org/10.18499/2225-7357-2023-12-1-9-19