Preview

Journal of Anatomy and Histopathology

Advanced search

Morphofunctional features of the uterus of rodents: morphogenesis, structure, cyclic changes, impact of various negative environmental factors

https://doi.org/10.18499/2225-7357-2022-11-3-82-92

Abstract

The review highlights and generalises data on morphological and functional features of the rodent uterus. In all viviparous vertebrates, the development of embryos occurs in a specific organ – the uterus. The mammalian uterus is a primary paired organ that develops from the oviducts. In mammals with more complicated level of organisation (in all placentals), there is a tendency for the fusion of two uteri (partial, for example, in most rodents). To date, the morphofunctional features of the uterus of laboratory animals have been sufficiently studied in representatives of the order Rodentia. The data on the structural features of the uterus of most rodents from natural ecosystems are stated to be fragmentary and refer mainly to synanthropic species. In all rodents, the uterine wall is structured typically of mammals and consists of three membranes – mucous (endometrium), muscular (myometrium) and serous (perimetry). The mucous membrane of the uterus is lined with a single layer of ciliated epithelium. Cyclic changes in the mucous membrane of the uterus and vagina of rodents results in a complex of rearrangements. Thus, the integumentary epithelium of the uterine mucosa is represented by high cylindrical cells during periods of physiological activity, the cell nuclei are arranged in two to three rows, and the height of the epithelium decreases during periods of physiological rest. The leading role in the functional regulation of the uterus belongs to female sex hormones; their secretion, in turn, depends on the pituitary and hypothalamic hormones. The paper provides data on the negative impact of various organic substances, metal compounds, physical factors, including electromagnetic effects, on the structural components of the uterine wall (integumentary and glandular epithelium, smooth muscle membrane myocytes, cellular elements of connective tissue).

About the Authors

N. N. Shevlyuk
Orenburg State Medical University
Russian Federation

Nikolai N. Shevlyuk – Doct. Biol. Sci., Prof, professor of histology, cytology and embryology department

ul. Sovetskaya, 6, Orenburg, 460000



E. V. Blinova
Orenburg State Medical University
Russian Federation

Elena V. Blinova – Cand. Biol. Sci., Assoc. Prof.

Orenburg



References

1. Alekperov SI, Suetov AA, Lavrenenok LV, Efremov VI, Kimstach AN. Effect of extremely low-frequency electromagnetic field exposure during embryonic and postnatal period on reproductive system of female rats. Problemy reproduktsii. 2018;24(5):11–9 (in Russian). EDN: YPOURF. Doi: 10.17116/repro20182405111

2. Bol’shakov VN, Vasil’ev AG, Vasil’eva IA, Gorodilova YuV, Kolcheva NE, Lyubashevskii NM, et al. Technogenic morphological variation of the pygmy wood mouse (Sylvaemus uralensis pall.) in the Urals. Russian Journal of Ecology. 2012 Oct 24;43(6):448–53 (in Russian). EDN: PDTYUX. Doi: 10.1134/S1067413612060033

3. Gordon DS, Gunin AG. Lokalizatsiya gistamina v strukturakh matki. Arkhiv anatomii. 1988;95(12):66–8 (in Russian).

4. Grigorieeva YuV, Suvorova GN, Bovtunova SS. Species peculiarities of cervical smooth muscle cells in some placental mammals. Morphology. 2018;153(3):83–3а (in Russian). EDN: XZCWNN

5. Grigoryeva YuV, Suvorova GN, Yukhimets SN. Anatomical and histological aspects of the uterine structure in albino rat. Morphology. 2019;155(1):29–34 (in Russian). EDN: ZDDKLB

6. Grigor'eva YuV, Chemidronov SN, Suvorova GN. Key moments of the organization of the myometrium of the cervix of the laboratory rat. Voprosy morfologii XXI veka. 2018;118–21 (in Russian). EDN: VTTYJO

7. Grigor'eva YuV, Yamshchikov NV, Chemidronov SN, Van'kov VA, Kachaev Oyu. Morphology of the uterine body and cervix walls of rats and rabbits. Actual Questions of Veterinary Biology. 2014;4:37–41 (in Russian). EDN: TBXMPT

8. Dzerzhinskii Fya, Vasil'ev BD, Malakhov VV. Zoologiya pozvonochnykh. Moscow: Izdatel'skii tsentr «Akademiya»; 2013 (in Russian).

9. Dudenkova NA, Shubina OS. Vliyanie svintsa na reproduktivnuyu sistemu organizma. Saransk: Mordovskii gos. ped. in-t; 2015 (in Russian).

10. Karlson B. Razvitie mochepolovoi sistemy. V kn.: Karlson B. Osnovy embriologii po Pettenu. V dvukh tomakh. T. 2. Moscow: Izd-vo «Mir». 1983 (in Russian).

11. Lukyanova LE, Lukyanov OA. An ecologically destabilized environment: its effect on small-mammal populations. Russian Journal of Ecology. 2004;35(3):181-18 (in Russian). EDN: OXPKHP. doi: 10.1023/B:RUSE.0000025969.98937.e5

12. Mlekopitayushchie (Bol'shoi entsiklopedicheskii slovar'). Nauchn. Red. IYa. Pavlinov. Moscow: Izdatel'stvo AST; 1999 (in Russian).

13. Mukhacheva SV. Longterm dynamics of heavy metal concentrations in the food and liver of bank voles (Myodes glareolus) in the period of reduction of emissions from a copper smelter. Russian Journal of Ecology. 2017;48(6):559–68. (in Russian). EDN: ZWGHBD. Doi: 10.7868/S0367059717060087

14. Nikitin AI. Faktory sredy I reproduktivnaya sistema cheloveka. Morphology. 1998;114(6):7–16 (in Russian).

15. Nikitin AI. Vrednye faktory sredy i reproduktivnaya sistema cheloveka (otvetstvennost' pered budushchimi pokoleniyami). Saint Petersburg: ELBI-Spb; 2005 (in Russian).

16. Nikitin AI, Sergeev OV, Suvorov AN. Vliyanie vrednykh faktorov sredy na reproduktivnuyu, endokrinnuyu sistemy I epigenom. Moscow: «Akvarel'»; 2016] (in Russian).

17. Nozdrachev A.D., Polyakov E.L. Anatomiya krysy (Laboratornye zhivotnye). Pod red. A.D. Nozdracheva. Saint Petersburg: Lan'; 2001 (in Russian).

18. Pailodze MV, Sanikidze TV. Oxidative metabolism of smooth muscle tissue of the uterus in normal conditions and during tumor growth (clinical and experimental study). Morphology. 2005;127(3):55–8 (in Russian).

19. Suvorova G.N., Grigor'eva Yu.V., Shurygina O.V. Peculiarities of reparative myogenesis in the uterine cervix during the stretching of the cervical canal in rats. Morphology. 2017;151(3):108 (in Russian). EDN: YPEHGX

20. Chertok AG, Nemkov YuK, Nedobyl'skaya YuP, Chertok VM. Gistokhimicheskaya kharakteristika kapillyarov endometriya mlekopitayushchikh. Morphology. 1996;110(5):64–7 (in Russian).

21. Chertok VM, Khramova IA, Kotsyuba AE. Dynamics of Organization of the Microcirculatory Bed and Mast Cells of the Uterus in Rats at Different Times of the Day. Bulletin of Experimental Biology and Medicine. 2020 Sep;169(5):710–3 (in Russian). EDN: SSYCXB, doi: 10.1007/s10517-020-04961-z

22. Chigrinec SV, Brjuhin GV. Endokrinnye dizraptory i besplodie. Chelyabinsk: Izdat. Tsentr «Titul»; 2020 (in Russian).

23. Shevljuk NN, Blinova EV, Bokov DA, Djomina LL, Elina EE, Meshkova OA, Ryskulov MF. Comparative morpho-functional characteristics of the organs of the reproductive system of small mammals under conditions of anthropogenic transformation of southern ural steppe ecosystems. Morphology. 2013;144(5):40–5 (in Russian). EDN: RCEFPL

24. Shevljuk NN, Elina EE. Biologiya razmnozheniya obyknovennoi slepushonki Ellobius talpinus. Orenburg: Izd-vo OGPU; 2008 (in Russian).

25. Shevljuk NN, Mamyrbaev AA, Umbetov TZh. Morpho-functional characteristics of vertebrate reproductive system under conditions of their habitat exposure to heavy metal compounds. Morphology. 2018;154(4):90–9 (in Russian). EDN: XZIUIH

26. Shevljuk NN, Rudi VN, Stadnikov AA. Biologiya razmnozheniya nazemnykh gryzunov iz semeistva belich'ikh. Ekaterinburg: UrO RAN; 1999 (in Russian).

27. Ahsan N, Ullah H, Ullah W, Jahan S. Comparative effects of Bisphenol S and Bisphenol A on the development of female reproductive system in rats; a neonatal exposure study. Chemosphere. 2018 Apr;197(4):336–43.

28. Alchalabi ASH, Rahim H, Aklilu E, Al-Sultan II, Aziz AR, Malek MF, et al. Histopathological changes associated with oxidative stress induced by electromagnetic waves in rats’ ovarian and uterine tissues. Asian Pacific Journal of Reproduction. 2016 Jul;5(4):301–10. Doi: 10.1016/j.apjr.2016.06.008

29. Alotaibi M. Hypoxic preconditioning ameliorates endometrial and myometrial damage and improves uterine function following prolonged hypoxia in nonpregnant rats. General physiology and biophysics. 2019;38(06):497–503. doi: 10.4149/gpb_2019031

30. Do Amaral VC, Simões MDJ, Marcondes RR, Matozinho Cubas JJ, Chada Baracat E, Soares JM. Histomorphometric analysis of the effects of creatine on rat myometrium. Gynecological Endocrinology. 2012 Feb 6;28(8):587–9. doi: 10.3109/09513590.2011.650748

31. Aydin M, Cevik A, Kandemir F, Yuksel M, Apaydin A. Evaluation of hormonal change, biochemical parameters, and histopathological status of uterus in rats exposed to 50-Hz electromagnetic field. Toxicology and Industrial Health. 2009 Apr;25(3):153–8. Doi: 10.1177/0748233709102717

32. Bagheripuor F, Ghanbari M, Piryaei A, Ghasemi A. Effects of fetal hypothyroidism on uterine smooth muscle contraction and structure of offspring rats. Experimental Physiology. 2018 Mar 26;103(5):683–92. doi: 10.1113/ep086564

33. Bitencourt G, Fortunato ED, Panis C, Amorim EMP, Arruda Amorim JP. Maternal exposure to triclosan causes fetal development restriction, deregulation of the oestrous cycle, and alters uterine tissue in rat offspring. Environmental Toxicology. 2019 Jun 25;34(10):1105–13. doi: 10.1002/tox.22812

34. Brandon JM, Evans JE. Observations on uterine mast cells during early pregnancy in the vole,Microtus agrestis. The Anatomical Record. 1984 Apr;208(4):515–20. Doi: 10.1002/ar.1092080407

35. Brauer MM. Plasticity in uterine innervation: State of the Art. Current Protein & Peptide Science. 2017;18(2):108–19. doi: 10.2174/1389203717666160322145411

36. Brody JR, Cunha GR. Histologic, morphometric, and immunocytochemical analysis of myometrial development in rats and mice: I. Normal development. American Journal of Anatomy. 1989 Sep;186(1):1–20. doi: 10.1002/aja.1001860102

37. Brody JR, Cunha GR. Histologic, morphometric, and immunocytochemical analysis of myometrial development in rats and mice: II. Effects of DES on development. American Journal of Anatomy. 1989 Sep;186(1):21–42. Doi: 10.1002/aja.1001860103

38. Buck Louis GM. Persistent environmental pollutants and couple fecundity: an overview. Reproduction. 2014 Apr;147(4):R97–104. Doi: 10.1530/rep-13-0472

39. Cooke PS, Spencer TE, Bartol FF, Hayashi K. Uterine glands: development, function and experimental model systems. Molecular Human Reproduction. 2013 Apr 25;19(9):547–58. doi: 10.1093/molehr/gat031

40. Cora MC, Kooistra L, Travlos G. Vaginal cytology of the laboratory rat and mouse: Review and criteria for the staqing of the estrous cycle using stained vaginal smears. Toxicologic Pathology. 2015 Mar 3;43(6):776–93. doi: 10.1177/0192623315570339

41. Ding J, Liu B, Han P, Cong Y, Wu D, Miao J, et al. Trichostatin A inhibits uterine histomorphology alterations induced by cigarette smoke exposure in mice. Life Sciences. 2019 Jul;228:112–20. Doi: 10.1016/j.lfs.2019.04.069

42. Fan H, Jiang L, Lee Y-L, Wong CKC, Ng EHY, Yeung WSB, et al. Bisphenol compounds regulate decidualized stromal cells in modulating trophoblastic spheroid outgrowth and invasion in vitro†. Biology of Reproduction. 2019 Nov 19;102(3):693–704. doi: 10.1093/biolre/ioz212

43. Ferreira CS, Carvalho KC, Maganhin CC, Paiotti APR, Oshima CTF, Simões MJ, et al. Does melatonin influence the apoptosis in rat uterus of animals exposed to continuous light? Apoptosis. 2015 Nov 5;21(2):155–62. Grande SW, Andrade AJM, Talsness CE, Grote K, Golombiewski A, Sterner-Kock A, et al. A dose response study following in utero and lactational exposureto (diethylhexyl) phthalate (DEHP): reproductive effects on adult female offspring rats. Toxicology. 2007;229(1–2):114–22. doi: 10.1016/j.tox.2006.10.005

44. Gray CA, Bartol FF, Tarleton BJ, Wiley AA, Johnson GA, Bazer FW, et al. Developmental Biology of Uterine Glands. Biology of Reproduction. 2001 Nov 1;65(5):1311–23. doi: 10.1095/biolreprod65.5.1311

45. Gye MC, Park CJ. Effect of electromagnetic field exposure on the reproductive system. Clinical and Experimental Reproductive Medicine. 2012;39(1):1–9. doi: 10.5653/cerm.2012.39.1.1

46. Hampl R, Kubátová J, Stárka L. Steroids and endocrine disruptors—History, recent state of art and open questions. The Journal of Steroid Biochemistry and Molecular Biology. 2016 Jan;155:217–23. doi: 10.1016/j.jsbmb.2014.04.013

47. Iwai M, Hamatani T, Nakamura A, Kawano N, Kanai S, Kang W, et al. Membrane protein CD9 is repositioned and released to enhance uterine function. Laboratory Investigation. 2018 Nov 6;99(2):200–9. doi: 10.1038/s41374-018-0145-1

48. Korach KS, Lamb JC. Estrogen action in the mouse uterus: differential nuclear localization of estradiol in uterine cell types. Endocrinology. 1981 May;108(5):1989–91. doi: 10.1210/endo-108-5-1989

49. Kuang H, Zhang W, Yang L, Aguilar ZP, Xu H. Reproductive organ dysfunction and gene expression after orally administration of ZnO nanoparticles in murine. Environmental Toxicology. 2020 Nov 25;36(4):550–61.

50. Kyathanahalli C, Marks J, Nye K, Lao B, Albrecht ED, Aberdeen GW, et al. Cross-Species Withdrawal of MCL1 Facilitates Postpartum Uterine Involution in Both the Mouse and Baboon. Endocrinology. 2013 Dec 1;154(12):4873–84. doi: 10.1210/en.2013-1325

51. Li Q, Wang J, Armant DR, Bagchi MK, Bagchi IC. Calcitonin Down-regulates E-cadherin Expression in Rodent Uterine Epithelium during Implantation. Journal of Biological Chemistry. 2002 Sep 16;277(48):46447–55. doi: 10.1074/jbc.m203555200

52. Li R, Wu S-P, Zhou L, Nicol B, Lydon JP, Yao HHC, et al. Increased FOXL2 expression alters uterine structures and functions†. Biology of Reproduction. 2020 Aug 25;103(5):951–65. doi: 10.1093/biolre/ioaa143

53. Lopez EW, Vue Z, Broaddus RR, Behringer RR, Gladden AB. The ERM family member Merlin is required for endometrial gland morphogenesis. Developmental Biology. 2018 Oct;442(2):301–14. doi: 10.1016/j.ydbio.2018.08.006

54. McLaren JF. Infertility Evaluation. Obstetrics and Gynecology Clinics of North America. 2012 Dec;39(4):453–63. doi: 10.1016/j.ogc.2012.09.001

55. Mehta FF, Son J, Hewitt SC, Jang E, Lydon JP, Korach KS, et al. Distinct functions and regulation of epithelial progesterone receptor in the mouse cervix, vagina, and uterus. Oncotarget. 2016 Mar 17;7(14):17455–67. doi: 10.18632/oncotarget.8159

56. Mendoza-Rodríguez CA, Merchant-Larios H, Segura-Valdez M de L, Moreno-Mendoza N, Cruz ME, Arteaga-López P, et al. Expression ofp53in luminal and glandular epithelium during the growth and regression of rat uterus during the estrous cycle. Molecular Reproduction and Development. 2002 Feb 21;61(4):445–52. doi: 10.1002/mrd.10114

57. Miska-Schramm A, Kruczek M, Kapusta J. Effectof copper exposure on reproductive ability in the bank vole (Myodes glareolus). Ecotoxicology. 2014 Aug 7;23(8):1546–54. doi: 10.1007/s10646-014-1295-6

58. Miska-Schramm A, Kapusta J, Kruczek M. The Effect of Aluminum Exposure on Reproductive Ability in the Bank Vole (Myodes glareolus). Biological Trace Element Research. 2016 Sep 29;177(1):97–106. doi: 10.1007/s12011-016-0848-3

59. Muhammad SI, Ismail M, Mahmud RB, Salisu AM, Zakaria ZA. Germinated brown rice and its bioactives modulate the activity of uterine cells in oophorectomised rats as evidenced by gross cytohistological and immunohistochemical changes. BMC Complementary and Alternative Medicine. 2013 Jul 30;13(1):198. doi: 10.1186/1472-6882-13-198

60. Mustafa FE-ZA, Elhanbaly R. Distribution of estrogen receptor in the rabbit cervix during pregnancy with special reference to stromal elements: an immunohistochemical study. Scientific Reports. 2020 Aug 12;10(1):13655. doi: 10.1038/s41598-020-70323-4

61. Negro-Vilar A. Stress and Other Environmental Factors Affecting Fertility in Men and Women: Overview. Environmental Health Perspectives. 1993 Jul;101(2):59–64. doi: 10.2307/3431377

62. Noël A, Hansen S, Zaman A, Perveen Z, Pinkston R, Hossain E, et al. In utero exposures to electronic-cigarette aerosols impair the Wnt signaling during mouse lung development. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2020 Apr 1;318(4):L705–22. doi: 10.1152/ajplung.00408.2019

63. Pourlis AF. Reproductive and developmental effects of EMF in vertebrate animal models. Pathophysiology. 2009 Aug;16(2-3):179–89. Doi: 10.1016/j.pathophys.2009.01.010

64. Rzymski P, Tomczyk K, Rzymski P, Poniedziałek B, Opala T, Wilczak M. Impact of heavy metals on the female reproductive system. Annals of Agricultural and Environmental Medicine [Internet]. 2015 May 11;22(2):259–64. doi: 10.5604/12321966.1152077

65. Somasundaram D, Manokaran K, Selvanesan B, Bhaskaran R. Impact of di-(2-ethylhexyl) phthalate on the uterus of adult Wistar rats. Human & Experimental Toxicology. 2016 Jul 29;36(6):565–72. doi: 10.1177/0960327116657601

66. Sato T, Fukazawa Y, Kojima H, Enari M, Iguchi T, Ohta Y. Apoptosis cell death during the estrous cycle in the rat uterus and vagina. J. Morphology. 2020;281(7):710–24.

67. Singh J, Ambreescha K. Heavy metal: its accumulation in human body and effect on human reproductive system. Ann. Cur.Res. 2016; Vol. 1. №1: 4 – 11.

68. Staneva L, Rosenbauer KA. Licht- und Elektronen mikroskopische Untersuchungen am Endometrium der Ratte. 1. Veranderungen des Endometriumepithels wahrend des Zyklus. Labor - Medizin (Git-Verlag Giebeler) 7(3): 211–21.

69. Tête N, Durfort M, Rieffel D, Scheifler R, Sánchez-Chardi A. Histopathology related to cadmium and lead bioaccumulation in chronically exposed wood mice, Apodemus sylvaticus, around a former smelter. Science of The Total Environment. 2014 May;481:167–77. Doi: 10.1016/j.scitotenv.2014.02.029

70. Thompson J, Bannigan J. Cadmium: Toxic effects on the reproductive system and the embryo. Reproductive Toxicology. 2008 Apr;25(3):304–15. doi: 10.1016/j.reprotox.2008.02.001

71. Vue Z, Behringer RR. Epithelial morphogenesis in the perinatal mouse uterus. Developmental Dynamics. 2020 Sep 3;249(11):1177–86. doi: 10.1002/dvdy.234

72. Vue Z, Gonzalez G, Stewart CA, Mehra S, Behringer RR. Volumetric imaging of the developing prepubertal mouse uterine epithelium using light sheet microscopy. Molecular Reproduction and Development. 2018 May;85(5):397–405. doi: 10.1002/mrd.22973

73. Wang H, Zhao W, Tan P, Liu J, Zhao J, Zhou B. The MMP-9/TIMP-1 System is Involved in Fluoride-Induced Reproductive Dysfunctions in Female Mice. Biological Trace Element Research. 2017 Jan 7;178(2):253–60. doi: 10.1007/s12011-016-0929-3

74. Zhang S, Sun Y, Jiang D, Chen T, Liu R, Li X, et al. Construction and Optimization of an Endometrial Injury Model in Mice by Transcervical Ethanol Perfusion. Reproductive Sciences. 2020 Sep 16;28(3):693–702. doi: 10.1007/s43032-020-00296-2


Review

For citations:


Shevlyuk N.N., Blinova E.V. Morphofunctional features of the uterus of rodents: morphogenesis, structure, cyclic changes, impact of various negative environmental factors. Journal of Anatomy and Histopathology. 2022;11(3):82-92. (In Russ.) https://doi.org/10.18499/2225-7357-2022-11-3-82-92

Views: 501


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2225-7357 (Print)