Features of CD38 enzyme distribution in tryptase-positive mast cells: cytophysiological and histotopographic aspects
https://doi.org/10.18499/2225-7357-2022-11-1-9-21
Abstract
Biological significance of the CD38 molecule goes beyond its metabolic, enzymatic, and proliferative functions. Possessing the functions of both an exoenzyme and a receptor, CD38 is actively involved in the mechanisms of adhesion, migration, intercellular signaling, formation of immune synapses, and modulation of a wide range of immune and non-immune cells. However, the detection of CD38 in mast cells (MC) on formalin-fixed and paraffin-embedded organ sections has not been previously performed.
The aim of the study was to evaluate immunohistochemically cytological and histotopographic features of CD38 distribution in MC of the skin, breast, palatine tonsils and bone marrow.
Materials and methods. In accordance with the design of the experiment, the authors studied biomaterial of organs from patients with neurotrophic skin ulcers, tonsillitis, mastocytosis, breast cancer, and pancreatic adenocarcinoma. CD38 was detected immunohistochemically; multiplex staining technology was used to study cytotopographic patterns of the enzymes distribution in MC and to identify the features of their histotopography.
Results. The possibility of immunohistochemical detection of CD38 in MC on histological sections of various organs was shown for the first time. CD38 expression was detected in a smaller part of the MC population and was characterized by wide variability from mild to pronounced levels. The content of CD38 in MC had organspecific features and also depended on the development of pathological processes in a specific tissue microenvironment.
Conclusion. Multiplex immunohistochemistry technologies allow detecting CD38 expression in mast cells and studying interaction of mast cells with other CD38+-targets in tissues, developing novel ideas about the mechanisms of realization of the preformed secretome component effects in normal and pathological conditions.
About the Authors
D. A. AtyakshinRussian Federation
Dmitrii A Atyakshin – Doct. Med. Sci., head laboratory of pathomorphology with drug toxicology of the Center for Collective Use
Ul. Miklokho-Maklaya, 6, Moscow, 117198
A. A. Kostin
Russian Federation
Andrei A Kostin – Doct. Med. Sci., Prof., Corresponding member of RAS, First Vice-Rector – Vice-Rector for Science
Ul. Miklokho-Maklaya, 6, Moscow, 117198
V. V. Shishkina
Russian Federation
Viktoriya V Shishkina – Cand. Med. Sci., head of the Research Institute of Experimental Biology and Medicine
Ul. Studencheskaya, 10, Voronezh, 394036
I. B. Buchwalow
Germany
Igor' B Buchwalow – MD, Prof., head of immunohistochemistry laboratory
Fangdieckstr, 75a, Hamburg, 22547
M. Tiemann
Russian Federation
Markus Tiemann – MD, Prof., head the Institute for Hematopathology
Fangdieckstr, 75a, Hamburg, 22547
References
1. Alanazi S, Grujic M, Lampinen M, Rollman O, Sommerhoff CP, Pejler G, et al. Mast Cell β-Tryptase Is Enzymatically Stabilized by DNA. International Journal of Molecular Sciences. 2020 Jul 17;21(14):5065. doi: 10.3390/ijms21145065
2. Aponte-López A, Muñoz-Cruz S. Mast Cells in the Tumor Microenvironment. Advances in Experimental Medicine and Biology. 2020;(1273):159–73. doi: 10.1007/978-3-030-49270-0_9
3. Atiakshin D, Buchwalow I, Horny P, Tiemann M. Protease profile of normal and neoplastic mast cells in the human bone marrow with special emphasis on systemic mastocytosis. Histochemistry and Cell Biology. 2021 Jan 25;155(5):561–80. doi: 10.1007/s00418-021-01964-3
4. Bataille R, Jégo G, Robillard N, Barillé-Nion S, Harousseau JL, Moreau P, Amiot M, Pellat-Deceunynck C. The phenotype of normal, reactive and malignant plasma cells. Identification of "many and multiple myelomas" and of new targets for myeloma therapy. Haematologica. 2006 Sep;91(9):1234-40.
5. Buchwalow I, Samoilova V, Boecker W, Tiemann M. Multiple immunolabeling with antibodies from the same host species in combination with tyramide signal amplification. Acta Histochemica. 2018 Jul;120(5):405–11. doi: 10.1016/j.acthis.2018.05.002
6. Buchwalow I, Samoilova V, Boecker W, Tiemann M. Non-specific binding of antibodies in immunohistochemistry: fallacies and facts. Scientific Reports. 2011 Jul 1;1(1):28. doi: 10.1038/srep00028
7. Buchwalow IB, Boecker W. Immunohistochemistry: Basics and Methods. 1st ed. Germany: Springer; 2010.
8. Carroll-Portillo A. Mast cell synapses and exosomes: membrane contacts for information exchange. Frontiers in Immunology. 2012;15(3):46. doi: 10.3389/fimmu.2012.00046
9. Choi HW, Naskar M, Seo HK, Lee HW. Tumor-Associated Mast Cells in Urothelial Bladder Cancer: Optimizing Immuno-Oncology. Biomedicines. 2021 Oct 20;9(11):1500. doi: 10.3390/biomedicines9111500
10. Deaglio S, Mehta K, Malavasi F. Human CD38: a (r)evolutionary story of enzymes and receptors. Leukemia Research. 2001 Jan;25(1):1–12. doi: 10.1016/s0145-2126(00)00093-x
11. Benfaremo D, Gabrielli A. Is There a Future for Anti-CD38 Antibody Therapy in Systemic Autoimmune Diseases? Cells. 2019 Dec 27;9(1):77. doi: 10.3390/cells9010077
12. Dwyer DF, Ordovas-Montanes J, Allon SJ, Buchheit KM, Vukovic M, Derakhshan T, et al. Human airway mast cells proliferate and acquire distinct inflammation-driven phenotypes during type 2 inflammation. Science Immunology. 2021 Feb 12;6(56). doi: 10.1126/sciimmunol.abb7221
13. Espinosa E, Valitutti S. New roles and controls of mast cells. Current Opinion in Immunology. 2018 Feb;50:39–47. doi: 10.1016/j.coi.2017.10.012
14. Glaría E, Valledor AF. Roles of CD38 in the Immune Response to Infection. Cells. 2020 Jan 16;9(1):228. doi: 10.3390/cells9010228
15. Hiepe F, Radbruch A. Plasma cells as an innovative target in autoimmune disease with renal manifestations. Nature Reviews Nephrology. 2016 Feb 29;12(4):232–40. doi: 10.1038/nrneph.2016.20
16. Komi DEA, Redegeld FA. Role of Mast Cells in Shaping the Tumor Microenvironment. Clinical Reviews in Allergy & Immunology. 2019 Jun 29;58(3):313–25. doi: 10.1007/s12016-019-08753-w
17. Konen JM, Fradette JJ, Gibbons DL. The Good, the Bad and the Unknown of CD38 in the Metabolic Microenvironment and Immune Cell Functionality of Solid Tumors. Cells. 2019 Dec 24;9(1):52. doi: 10.3390/cells9010052
18. Krejcik J, Casneuf T, Nijhof IS, Verbist B, Bald J, Plesner T, et al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood. 2016 Jul 21;128(3):384–94. doi: 10.1182/blood-2015-12-687749
19. Krejcik J, Frerichs KA, Nijhof IS, van Kessel B, van Velzen JF, Bloem AC, et al. Monocytes and Granulocytes Reduce CD38 Expression Levels on Myeloma Cells in Patients Treated with Daratumumab. Clinical Cancer Research. 2017 Oct 12;23(24):7498–511. doi: 10.1158/1078-0432.ccr-17-2027
20. Lam JH, Ng HHM, Lim CJ, Sim XN, Malavasi F, Li H, et al. Expression of CD38 on Macrophages Predicts Improved Prognosis in Hepatocellular Carcinoma. Frontiers in Immunology. 2019 Sep 4;10:2093. doi: 10.3389/fimmu.2019.02093
21. Lammerts van Bueren J, Jakobs D, Kaldenhoven N, Roza M, Hiddingh S, Meesters J, et al. Direct in Vitro Comparison of Daratumumab with Surrogate Analogs of CD38 Antibodies MOR03087, SAR650984 and Ab79. Blood. 2014 Dec 6;124(21):3474–4. doi: 10.1182/blood.v124.21.3474.3474
22. Lee HC. Structure and Enzymatic Functions of Human CD38. Molecular Medicine. 2006 Nov;12(11-12):317–23. doi: 10.2119/2006-00086.lee
23. Li Z, Liu S, Xu J, Zhang X, Han D, Liu J, et al. Adult Connective Tissue-Resident Mast Cells Originate from Late Erythro-Myeloid Progenitors. Immunity. 2018 Oct;49(4):640-53. doi: 10.1016/j.immuni.2018.09.023
24. Malavasi F, Deaglio S, Ferrero E, Funaro A, Sancho J, Ausiello CM, et al. CD38 and CD157 as Receptors of the Immune System: A Bridge Between Innate and Adaptive Immunity. Molecular Medicine. 2006 Nov;12(11-12):334–41. doi: 10.2119/2006-00094.malavasi
25. Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E, et al. Evolution and Function of the ADP Ribosyl Cyclase/CD38 Gene Family in Physiology and Pathology. Physiological Reviews. 2008 Jul;88(3):841–86. doi: 10.1152/physrev.00035.2007
26. Martin TG, Corzo K, Chiron M, van de Velde H, Abbadessa G, Campana F, et al. Therapeutic Opportunities with Pharmacological Inhibition of CD38 with Isatuximab. Cells. 2019 Nov 26;8(12):1522. doi: 10.3390/cells8121522
27. Mehtani D, Puri N. Steering Mast Cells or Their Mediators as a Prospective Novel Therapeutic Approach for the Treatment of Hematological Malignancies. Frontiers in Oncology. 2021 Sep 24;11:731323. doi: 10.3389/fonc.2021.731323
28. Melo FR, Wallerman O, Paivandy A, Calounova G, Gustafson A-M, Sabari BR, et al. Tryptasecatalyzed core histone truncation: A novel epigenetic regulatory mechanism in mast cells. Journal of Allergy and Clinical Immunology. 2017 Aug;140(2):474–85. doi: 10.1016/j.jaci.2016.11.044
29. Morandi F, Airoldi I, Marimpietri D, Bracci C, Faini AC, Gramignoli R. CD38, a Receptor with Multifunctional Activities: From Modulatory Functions on Regulatory Cell Subsets and Extracellular Vesicles, to a Target for Therapeutic Strategies. Cells. 2019 Nov 27;8(12):1527. doi: 10.3390/cells8121527
30. Morandi F, Marimpietri D, Horenstein AL, Bolzoni M, Toscani D, Costa F, et al. Microvesicles released from multiple myeloma cells are equipped with ectoenzymes belonging to canonical and noncanonical adenosinergic pathways and produce adenosine from ATP and NAD+. OncoImmunology. 2018 Mar 29;7:e1458809. doi: 10.1080/2162402x.2018.1458809
31. Morandi F, Marimpietri D, Horenstein AL, Corrias MV, Malavasi F. Microvesicles expressing adenosinergic ectoenzymes and their potential role in modulating bone marrow infiltration by neuroblastoma cells. OncoImmunology. 2019 Feb 19;8(5):e1574198. doi: 10.1080/2162402x.2019.1574198
32. Muñoz P, Navarro M-C, Pavón EJ, Salmerón J, Malavasi F, Sancho J, et al. CD38 Signaling in T Cells Is Initiated within a Subset of Membrane Rafts Containing Lck and the CD3-ζ Subunit of the T Cell Antigen Receptor. Journal of Biological Chemistry. 2003 Dec;278(50):50791–802. doi: 10.1074/jbc.m308034200
33. Nakahata T, Toru H. Cytokines Regulate Development of Human Mast Cells from Hematopoietic Progenitors. International Journal of Hematology. 2002 May;75(4):350–6. doi: 10.1007/bf02982123
34. Nielsen T, Kristensen SR, Gregersen H, Teodorescu EM, Christiansen G, Pedersen S. Extracellular vesicle-associated procoagulant phospholipid and tissue factor activity in multiple myeloma. Camussi G, editor. PLOS ONE. 2019 Jan 14;14(1):e0210835. doi: 10.1371/journal.pone.0210835
35. Quarona V, Zaccarello G, Chillemi A, Brunetti E, Singh VK, Ferrero E, et al. CD38 and CD157: a long journey from activation markers to multifunctional molecules. Cytometry Part B, Clinical Cytometry. 2013 Jul 1;84(4):207–17. doi: 10.1002/cyto.b.21092
36. Rabelo Melo F, Santosh Martin S, Sommerhoff CP, Pejler G. Exosome-mediated uptake of mast cell tryptase into the nucleus of melanoma cells: a novel axis for regulating tumor cell proliferation and gene expression. Cell Death & Disease. 2019 Sep;10(9):659. doi: 10.1038/s41419-019-1879-4
37. Ribatti D, Annese T, Tamma R. Controversial role of mast cells in breast cancer tumor progression and angiogenesis. Clinical Breast Cancer. 2021 Aug;21(6):486–91. doi: 10.1016/j.clbc.2021.08.010
38. Rönnberg E, Boey DZH, Ravindran A, Säfholm J, Orre A-C, Al-Ameri M, et al. Immunoprofiling reveals novel mast cell receptors and a continuous nature of human lung mast cell heterogeneity. 2021 Mar 12. doi: 10.1101/2021.03.12.435093
39. Sconocchia G, Titus JA, Mazzoni A, Visintin A, Pericle F, Hicks SW, et al. CD38 Triggers Cytotoxic Responses in Activated Human Natural Killer Cells. Blood. 1999 Dec 1;94(11):3864–71. doi: 10.1182/blood.v94.11.3864.423k14_3864_3871
40. Shiohara M, Koike K. Regulation of Mast Cell Development. Mast Cells in Allergic Diseases. 2005;87:1–21. doi: 10.1159/000087566
41. Steiniger BS, Raimer L, Ecke A, Stuck BA, Cetin Y. Plasma cells, plasmablasts, and AID+/CD30+ B lymphoblasts inside and outside germinal centres: details of the basal light zone and the outer zone in human palatine tonsils. Histochemistry and Cell Biology. 2020 Mar 14;154(1):55–75. doi: 10.1007/s00418-020-01861-1
42. Terhorst C, van Agthoven A, Leclair K, Snow P, Reinherz E, Schlossman S. Biochemical studies of the human thymocyte cell-surface antigens T6, T9 and T10. Cell. 1981 Mar;23(3):771–80. doi: 10.1016/0092-8674(81)90441-4
43. Tiemann M, Atiakshin D, Samoilova V, Buchwalow I. Identification of CTLA-4-Positive Cells in the Human Tonsil. Cells. 2021 Apr 27;10(5):1027. doi: 10.3390/cells10051027
44. van de Donk NWCJ, Usmani SZ. CD38 Antibodies in Multiple Myeloma: Mechanisms of Action and Modes of Resistance. Frontiers in Immunology. 2018 Sep 20;9:2134. doi: 10.3389/fimmu.2018.02134
45. Wo YJ, Gan ASP, Lim X, Tay ISY, Lim S, Lim JCT, et al. The Roles of CD38 and CD157 in the Solid Tumor Microenvironment and Cancer Immunotherapy. Cells. 2019 Dec 20;9(1):26. doi: 10.3390/cells9010026
46. Zhang W, Hubbard A, Jones T, Racolta A, Bhaumik S, Cummins N, et al. Fully automated 5- plex fluorescent immunohistochemistry with tyramide signal amplification and same species antibodies. Laboratory Investigation. 2017 May 15;97(7):873–85. doi: 10.1038/labinvest.2017.37
47. Zambello R, Barilà G, Manni S, Piazza F, Semenzato G. NK cells and CD38: Implication for (Immuno) Therapy in Plasma Cell Dyscrasias. Cells. 2020 Mar 21;9(3):768. doi: 10.3390/cells9030768
48. Zilber M-T, Gregory S, Mallone R, Deaglio S, Malavasi F, Charron D, et al. CD38 expressed on human monocytes: A coaccessory molecule in the superantigen-induced proliferation. Proceedings of the National Academy of Sciences. 2000 Mar 7;97(6):2840–5. doi: 10.1073/pnas.050583197
Review
For citations:
Atyakshin D.A., Kostin A.A., Shishkina V.V., Buchwalow I.B., Tiemann M. Features of CD38 enzyme distribution in tryptase-positive mast cells: cytophysiological and histotopographic aspects. Journal of Anatomy and Histopathology. 2022;11(1):9-21. (In Russ.) https://doi.org/10.18499/2225-7357-2022-11-1-9-21