Preview

Journal of Anatomy and Histopathology

Advanced search

Oxidative Stress and Endothelial Dysfunction in the Development of Simulated Radio-Induced Lung Damage and their Correction with Pulmonary Surfactant

https://doi.org/10.18499/2225-7357-2020-9-1-35-42

Abstract

Radiation exposure to the chest organs used in the complex treatment of neoplasms is often accompanied by the development of radiation pneumonitis, fibrosis and respiratory failure.

The aim of the study was to evaluate oxidative stress and endothelial dysfunction in radio-induced lung damage and possibility of their correction with a pulmonary surfactant preparation.

Material and methods. Lung tissue samples of 82 male Wistar rats were investigated in the study. Single local irradiation of animals was performed with the X-ray RUM-17 unit at a dose 12 Gy. The quantitative content and fractional composition of phospholipids of pulmonary surfactant were determined in the study. Oxidative stress was detected using Raman spectroscopy, endothelial dysfunction was detected immunohistochemically.

Results. Oxidative stress and endothelial dysfunction were registered starting from the first day of the experiment, and manifested by an increased content of free radicals and a decrease in endothelial function indices supported by precise spectroscopic, immunohistochemical and electron microscopic methods. With application of Surfactant-BL preparation oxidative stress manifestations were eliminated to the beginning of the intermediate stage of the experiment, and were preserved without correction until its completion.

Conclusions. Three-fold intratracheal administration of a pulmonary surfactant preparation implements an antioxidant, immunomodulatory and compensating effect attenuating the alterative effect of oxidative stress and its initiating impact on the development of endothelial dysfunction. Native surfactant having a pronounced effect on all components of the lung tissue including alveolocytes of the first and second types and endothelial cells of the capillaries of the lung results in the correction of endothelial dysfunction.

About the Authors

Yu. A. Kirillov
Research Institute of Human Morphology
Russian Federation

Yurii Kirillov.

ul. Tsyurupy, 3, Moscow, Russian Federation.



I. A. Chernov
Tyumen State Medical University
Russian Federation
Tyumen.


E. M. Malysheva
Tyumen State Medical University; City Clinical Hospital No. 40
Russian Federation

Tyumen.

Moscow.



S. E. Timofeev
Tyumen State Medical University; City Clinical Hospital No. 40
Russian Federation

Tyumen.

Moscow.



V. I. Kukushkin
Institute of Solid State Physics
Russian Federation
Chernogolovka.


N. V. Zharkov
City Clinical Hospital No. 40
Russian Federation
Moscow.


O. A. Rozenberg
A.M. Granov Russian Scientific Center of Radiology and Surgical Technologies
Russian Federation
Saint Petersburg.


References

1. Александров Н.С., Авраамова С.Т., Кириллов Ю.А., Бабичева Т.О., Кукушкин В.И., Артемьев Д.Н. Использование метода раманфлуоресцентной спектроскопии для диагностики светлоклеточного почечно-клеточного рака. Клиническая и экспериментальная морфология. 2017;4(24):59–65 [Aleksandrov NS, Avraamova ST, Kirillov UA, Babicheva TO, Kukushkin VI, Artemyev DN. Application of raman-fluorescence spectroscopy for diagnostics of clear cell renal cell carcinoma. Clin. exp. morphology. 2017;4(24):59–65] (in Russian).

2. Ахминеева А.Х. Эндотелиальная дисфункция и оксидативный стресс в развитии респираторно-кардиальной коморбидности: автореф. дис. ... докт. мед. наук. Астрахань; 2015. 48 [Akhmineyeva AKH. Endotelial’naya disfunktsiya i oksidativnyy stress v razvitii respiratornokardial’noy komorbidnosti: avtoref. dis. ... dokt. med. nauk. Astrakhan; 2015. 48] (in Russian).

3. Неклюдова Г.В. Роль эндотелиальной дисфункции и ремоделирования сосудов легких в формировании легочной гипертензии у больных хронической обструктивной болезнью легких и идиопатическим легочным фиброзом: автореф. дис. ... докт. мед. наук. М.; 2010. 47 [Neklyudova GV. Rol’ endotelial’noy disfunktsii i remodelirovaniya sosudov legkikh v formirovanii legochnoy gipertenzii u bol’nykh khronicheskoy obstruktivnoy bolezn’yu legkikh i idiopaticheskim legochnym fibrozom: avtoref. dis. ... dokt. med. nauk. Moscow; 2010. 47] (in Russian).

4. Розенберг О.А. Препараты легочного сурфактанта и сурфактанттерапия ОРДС в условиях хирургической реанимации (обзор литературы). Креативная хирургия и онкология. 2019;9(1):50–65 [Rosenberg OA. Pulmonary Surfactant Preparations and Surfactant Therapy for ARDS in Surgical Intensive Care (a Literature Review). Creative surgery and oncology. 2019;9(1):50–65] (In Russian). doi: 10.24060/2076-3093-2019-9-1-50-65

5. Abadi SHMH, Shirazi A, Alizadeh AM, Changizi V, Najafi M, Khalighfard S, et al. The Effect of Melatonin on Superoxide Dismutase and Glutathione Peroxidase Activity, and Malondialdehyde Levels in the Targeted and the Non-targeted Lung and Heart Tissues after Irradiation in Xenograft Mice Colon Cancer. Curr Mol Pharmacol. 2018;11(4):326–35. doi: 10.2174/1874467211666180830150154

6. Carter CL, Jones JW, Farese AM, MacVittie TJ, Kane MA. Lipidomic dysregulation within the lung parenchyma following whole-thorax lung irradiation: Markers of injury, inflammation and fibrosis detected by MALDI-MSI. Sci Rep. 2017 Sep 4;7(1):10343. doi: 10.1038/s41598-017-10396-w

7. Hawkins PG, Sun Y, Dess RT, Jackson WC, Sun G, Bi N, Tewari M, et al. Circulating microRNAs as biomarkers of radiation-induced cardiac toxicity in non-small-cell lung cancer. J. Cancer. J Cancer Res Clin Oncol. 2019 Jun;145(6):1635–43. doi: 10.1007/s00432-019-02903-5

8. Judge JL, Lacy SH, Ku WY, Owens KM, Hernady E, Thatcher TH, et al. The Lactate Dehydrogenase Inhibitor Gossypol Inhibits Radiation-Induced Pulmonary Fibrosis. Radiat Res. 2017 Jul;188(1):35–43. doi: 10.1667/RR14620

9. Panikkanvalappil SR, James M, Hira SM, Mobley J, Jilling T, Ambalavanan N, et al. Hyperoxia Induces Intracellular Acidification in Neonatal Mouse Lung Fibroblasts: Real-Time Investigation Using Plasmonically Enhanced Raman Spectroscopy. J Am Chem Soc. 2016 Mar 23;138(11):3779–88. doi: 10.1021/jacs.5b13177

10. Pence I, Mahadevan-Jansen A. Clinical instrumentation and applications of Raman spectroscopy. Chem Soc Rev. 2016 Apr 7;45(7):1958–79. doi: 10.1039/c5cs00581g

11. Qian K, Wang Y, Hua L, Chen A, Zhang Y. New method of lung cancer detection by saliva test using surface-enhanced Raman Spectroscopy. Thorac Cancer. 2018 Nov;9(11):1556–61. doi: 10.1111/1759-7714.12837

12. Smith TA, Kirkpatrick DR, Smith S, Smith TK, Pearson T, Kailasam A, et al. Radioprotective agents to prevent cellular damage due to ionizing radiation. J Transl Med. 2017 Nov 9;15(1):232. doi: 10.1186/s12967-017-1338-x

13. Vaskovsky VE, Kostetsky VY, Vasendin IM. A universal reagent for phospholipid analysis. J Chromatography. 1975;114(1):129–41.

14. Yin Z, Yang G, Deng S, Wang Q. Oxidative stress levels and dynamic changes in mitochondrial gene expression in a radiation-induced lung injury model. J Radiat Res. 2019 Mar 1;60(2):204–14. doi: 10.1093/jrr/rry105


Review

For citations:


Kirillov Yu.A., Chernov I.A., Malysheva E.M., Timofeev S.E., Kukushkin V.I., Zharkov N.V., Rozenberg O.A. Oxidative Stress and Endothelial Dysfunction in the Development of Simulated Radio-Induced Lung Damage and their Correction with Pulmonary Surfactant. Journal of Anatomy and Histopathology. 2020;9(1):35-42. (In Russ.) https://doi.org/10.18499/2225-7357-2020-9-1-35-42

Views: 609


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2225-7357 (Print)