Preview

Журнал анатомии и гистопатологии

Расширенный поиск

Матриксные металлопротеиназы в ремоделировании внеклеточного матрикса: молекулярные, клеточные и тканевые аспекты

https://doi.org/10.18499/2225-7357-2022-11-3-93-108

Аннотация

Матриксные металлопротеиназы являются неотъемлемым компонентом органоспецифичного тканевого микроокружения, принимая непосредственное участие как в физиологических механизмах регуляции состояния интегративно-буферной метаболической среды, ремоделирования тканей, морфогенеза и иммуногенеза, так и генезе многих патологических состояний. Данным обстоятельством определяется высокий уровень актуальности для космической биомедицины вопросов регуляции активности матриксных металлопротеиназ в условиях измененной гравитации. Исследования, включенные в текущий систематический обзор, были получены из независимого поиска литературы, выполненного в базах данных PubMed и Cochrane, а также из других источников, таких как Google Scholar и Сервер технических отчетов НАСА. Разнообразные факторы стресса, связанные с космическими полетами, в частности, воздействие радиации, усиливают экспрессию трансформирующего фактора роста бета и матриксной металлопротеиназы-2. Экспериментальные данные, полученные в ходе нескольких полетов, показывают, что микрогравитация влияет на архитектонику клеток и увеличивает экспрессию матриксной металлопротеиназы-1 и интерлейкин-6. Микрогравитация снижает экспрессию коллагена I и снижает уровень фибриллярного коллагена, что отражается на механических свойствах внутриклеточного матрикса. Матриксные металлопротеиназы-1; -3; -10 показали увеличение активности в образцах полета 16-недельных самок мышей C57BL/6J в течение 15 дней во время на борту космического шаттла Discovery во время миссии STS-131 по сравнению с наземным контролем, в то время как ингибиторы матриксной металлопротеиназы – тканевые ингибиторы металлопротеиназ-1; 2, и 3, не проявили статистически значимых изменений в экспрессии генов. Были определены достоверные различия в профилях экспрессии генов в легких между группами космического полета и наземного контроля. Среди генов, экспрессия которых была повышена более чем в два раза, были CTGF, MMP-2, NACM1, SPARC, SPOCK1и TIMP-3, в то время как в списке генов с наибольшим снижением экспрессии оказались LAMA1, MMP-3, MMP-7, MMP-13, VCAM-1и SELE.

Об авторах

В. В. Шишкина
Воронежский государственный медицинский университет им. Н. Н. Бурденко
Россия

Шишкина Виктория Викторовна – канд. мед. наук, доцент, директор НИИ экспериментальной биологии и медицины

ул. Студенческая, 10, Воронеж, 394036



Л. Н. Антакова
Воронежский государственный медицинский университет им. Н. Н. Бурденко
Россия

Антакова Любовь Николаевна – канд. биол. наук, ст. научн. сотр.

Воронеж



С. Н. Золотарева
Воронежский государственный медицинский университет им. Н. Н. Бурденко
Россия

Золотарева Светлана Николаевна – канд. биол. наук, доцент

Воронеж



Д. А. Атякшин
Воронежский государственный медицинский университет им. Н. Н. Бурденко; Российский университет дружбы народов
Россия

Атякшин Дмитрий Андреевич – д-р мед. наук, доцент

Воронеж; Москва



Список литературы

1. Григоркевич О.С., Мокров Г.В., Косова Л.Ю. Матриксные металлопротеиназы и их ингибиторы. Фармакокинетика и Фармакодинамика. 2019;(2):3-16 doi: 10.24411/2587-7836-2019-10040

2. Маркелова Е.В., Здор В.В., Романчук А.Л., Бирко О.Н. Матриксные металлопротеиназы их взаимосвязь с системой цитокинов, диагностический и прогностический потенциал. Иммунопатология, аллергология, инфектология. 2016;2:11–22 doi: 10.14427/jipai.2016.2.11

3. Шишкина В.В., Атякшин Д.А. Участие тучных клеток кожи в механизмах фибриллогенеза под влиянием невесомости. Морфология. 2019;155(2):328

4. Ågren MS, auf dem Keller U. Matrix Metalloproteinases: How Much Can They Do? International Journal of Molecular Sciences. 2020 Apr 12;21(8):2678. doi: 10.3390/ijms21082678

5. Ahn CB, Lee J-H, Han DG, Kang H-W, Lee S-H, Lee J-I, et al. Simulated microgravity with floating environment promotes migration of non-small cell lung cancers. Scientific Reports. 2019 Oct 10;9(1):1–10. doi: 10.1038/s41598-019-50736-6

6. de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, et al. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Schulte G, editor. Pharmacological Reviews. 2022 Jun 23;74(3):712–68. doi: 10.1124/pharmrev.121.000349

7. Blaber EA, Dvorochkin N, Lee C, Alwood JS, Yousuf R, Pianetta P, et al. Microgravity Induces Pelvic Bone Loss through Osteoclastic Activity, Osteocytic Osteolysis, and Osteoblastic Cell Cycle Inhibition by CDKN1a/p21. PLoS ONE. 2013 Apr 18;8(4):e61372. Doi: 10.1371/journal.pone.0061372

8. Buken C, Sahana J, Corydon TJ, Melnik D, Bauer J, Wehland M, et al. Morphological and Molecular Changes in Juvenile Normal Human Fibroblasts Exposed to Simulated Microgravity. Scientific Reports. 2019 Aug 15;9(1):11882. doi: 10.1038/s41598-019-48378-9

9. Burn GL, Foti A, Marsman G, Patel DF, Zychlinsky A. The Neutrophil. Immunity. 2021 Jul;54(7):1377–91. Doi: 10.1016/j.immuni.2021.06.006

10. Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuña JM, Perez-Romero BA, Guerrero-Rodriguez JF, et al. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. International Journal of Molecular Sciences. 2020 Dec 20;21(24):9739. doi: 10.3390/ijms21249739

11. Cambi A, Chavrier P. Tissue remodeling by invadosomes. Faculty Reviews. 2021 Apr 16;10:39. doi: 10.12703/r/10-39

12. Chatziravdeli V, Katsaras GN, Lambrou GI. Gene Expression in Osteoblasts and Osteoclasts Under Microgravity Conditions: A Systematic Review. Current Genomics. 2019 Jul 22;20(3):184–98. doi: 10.2174/1389202920666190422142053

13. Crucian B, Babiak-Vazquez A, Johnston S, Pierson D, Ott CM, Sams C. Incidence of clinical symptoms during long-duration orbital spaceflight. International Journal of General Medicine. 2016 Nov;9:383–91. Doi: 10.2147/IJGM.S114188

14. Cuccarolo P, Barbieri F, Sancandi M, Viaggi S, Degan P. Differential behaviour of normal, transformed and Fanconi’s anemia lymphoblastoid cells to modeled microgravity. Journal of Biomedical Science. 2010 Jul 28;17(1):63. doi: 10.1186/1423-0127-17-63

15. Cui N, Hu M, Khalil RA. Biochemical and Biological Attributes of Matrix Metalloproteinases. Progress in Molecular Biology and Translational Science. 2017;147:1–73. doi: 10.1016/bs.pmbts.2017.02.005

16. Cox TR. The matrix in cancer. Nature Reviews Cancer. 2021;21(4):217–38.

17. Duansak N, Schmid-Schönbein GW. The oxygen free radicals control MMP-9 and transcription factors expression in the spontaneously hypertensive rat. Microvascular Research. 2013 Nov;90:154–61. doi: 10.1016/j.mvr.2013.09.003

18. Eguchi T, Kubota S, Kawata K, Mukudai Y, Uehara J, Ohgawara T, et al. Novel Transcription FactorLike Function of Human Matrix Metalloproteinase 3 Regulating the CTGF/CCN2 Gene. Molecular and Cellular Biology. 2008 Apr;28(7):2391–413. doi: 10.1128/MCB.01288-07

19. Eisenach PA, Roghi C, Fogarasi M, Murphy G, English WR. MT1-MMP regulates VEGF-A expression through a complex with VEGFR-2 and Src. Journal of Cell Science. 2010 Dec 1;123(23):4182–93. doi: 10.1242/jcs.062711

20. Ercan E. Effects of aerospace environments on the cardiovascular system. The Anatolian Journal of Cardiology. 2021 Aug 25;25(Supp1):S3–6. Doi: 10.5152/AnatolJCardiol.2021.S103

21. Gharib SA, Manicone AM, Parks WC. Matrix metalloproteinases in emphysema. Matrix Biology. 2018 Nov;73:34–51. Doi: 10.1016/j.matbio.2018.01.018

22. Han K-Y, Chang J-H, Azar DT. MMP14-Containing Exosomes Cleave VEGFR1 and Promote VEGFA-Induced Migration and Proliferation of Vascular Endothelial Cells. Investigative Opthalmology & Visual Science. 2019 May 22;60(6):2321–9. doi: 10.1167/iovs.18-26277

23. Hanania R, Song Sun H, Xu K, Pustylnik S, Jeganathan S, Harrison RE. Classically Activated Macrophages Use Stable Microtubules for Matrix Metalloproteinase-9 (MMP-9) Secretion. Journal of Biological Chemistry. 2012 Mar;287(11):8468–83. doi: 10.1074/jbc.M111.290676

24. Hey S, Ratt A, Linder S. There and back again: Intracellular trafficking, release and recycling of matrix metalloproteinases. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2022 Apr;1869(4):119189. Doi: 10.1016/j.bbamcr.2021.119189

25. Hiam-Galvez KJ, Allen BM, Spitzer MH. Systemic immunity in cancer. Nature Reviews Cancer. 2021 Jun 1;21(6):345–59. doi: 10.1038/s41568-021-00347-z

26. Hou JY, Wang XN, Qiu G, Gao DL, Wang Y. Correlation between CT small airway parameters, T-lymphocyte subsets and MMP-9 level in patients with bronchial asthma. J Biol Regul Homeost Agents. 2020 Nov-Dec;34(6):2299-2304. Doi: 10.23812/20-520-L

27. Hoshino D, Kirkbride Kellye C, Costello K, Clark Emily S, Sinha S, Grega-Larson N, et al. Exosome Secretion Is Enhanced by Invadopodia and Drives Invasive Behavior. Cell Reports. 2013 Dec;5(5):1159–68. Doi: 10.1016/j.celrep.2013.10.050

28. Kapoor C, Vaidya S, Wadhwan V, Hitesh, Kaur G, Pathak A. Seesaw of matrix metalloproteinases (MMPs). Journal of Cancer Research and Therapeutics. 2016;12(1):28–35. doi: 10.4103/0973-1482.157337

29. Kehlet SN, Manon-Jensen T, Sun S, Brix S, Leeming DJ, Karsdal MA, et al. A fragment of SPARC reflecting increased collagen affinity shows pathological relevance in lung cancer –implications of a new collagen chaperone function of SPARC. Cancer Biology & Therapy. 2018 Aug;19(10):904–12. Doi: 10.1080/15384047.2018.1480887

30. Klose A, Zigrino P, Mauch C. Monocyte/Macrophage MMP-14 Modulates Cell Infiltration and T-Cell Attraction in Contact Dermatitis But Not in Murine Wound Healing. The American Journal of Pathology. 2013 Mar;182(3):755–64. Doi: 10.1016/j.ajpath.2012.11.028

31. Krishnan A, Li X, Kao W-Y, Viker K, Butters K, Masuoka H, et al. Lumican, an extracellular matrix proteoglycan, is a novel requisite for hepatic fibrosis. Laboratory Investigation. 2012 Sep 24;92(12):1712–25. doi: 10.1038/labinvest.2012.121

32. Lagoutte P, Bettler E, Vadon-Le Goff S, Moali C. Procollagen C-proteinase enhancer-1 (PCPE-1), a potential biomarker and therapeutic target for fibrosis. Matrix Biology Plus. 2021 Aug;11:100062. doi: 10.1016/j.mbplus.2021.100062

33. Lattimer CR, Fareed J, Hoppensteadt D, Maia P, Ligi D, Mannello F, et al. Validation of a Gravitational Model to Study Local Endogenous Biomarkers in Chronic Venous Insufficiency. European Journal of Vascular and Endovascular Surgery. 2018 Dec;56(6):865–73. Doi: 10.1016/j.ejvs.2018.08.004

34. Liphardt A, Mündermann A, Heer M, Achtzehn S, Niehoff A, Mester J. Locomotion replacement exercise cannot counteract cartilage biomarker response to 5 days of immobilization in healthy adults. Journal of Orthopaedic Research. 2020 Jul 23;38(11):2373–82. doi: 10.1002/jor.24753

35. Louis F, Deroanne C, Nusgens B, Vico L, Guignandon A. RhoGTPases as Key Players in Mammalian Cell Adaptation to Microgravity. BioMed Research International. 2015;2015:1–17. doi: 10.1155/2015/747693

36. Marchant DJ, Bellac CL, Moraes TJ, Wadsworth SJ, Dufour A, Butler GS, et al. A new transcriptional role for matrix metalloproteinase-12 in antiviral immunity. Nature Medicine. 2014 Apr 28;20(5):493–502. doi: 10.1038/nm.3508

37. Miyagawa T, Hasegawa K, Aoki Y, Watanabe T, Otagiri Y, Arasaki K, et al. MT1-MMP recruits the ER-Golgi SNARE Bet1 for efficient MT1-MMP transport to the plasma membrane. Journal of Cell Biology. 2019 Sep 13;218(10):3355–71. doi: 10.1083/jcb.201808149

38. Nusgens B, Chometon G, Guignandon A, Ho G, Lambert Ch, Mineur P, Servotte S, Zhang Z. et al. Role of the RhoGTPases in the cellular receptivity and reactivity to mechanical signals including microgravity. ESA Special Publication. 2005; 585: 57.

39. Nighot M, Ganapathy AS, Saha K, Suchanec E, Castillo EF, Gregory A, et al. Matrix Metalloproteinase MMP-12 Promotes Macrophage Transmigration Across Intestinal Epithelial Tight Junctions and Increases Severity of Experimental Colitis. Journal of Crohn’s and Colitis. 2021 Apr 9;15(10):1751–65. doi: 10.1093/ecco-jcc/jjab064

40. Parganlija D, Gehlert S, Herrera F, Rittweger J, Bloch W, Zange J. Enhanced Blood Supply Through Lower Body Negative Pressure During Slow-Paced, High Load Leg Press Exercise Alters the Response of Muscle AMPK and Circulating Angiogenic Factors. Frontiers in Physiology. 2020 Jul 30;11. doi: 10.3389/fphys.2020.00781

41. Planchon D, Rios Morris E, Genest M, Comunale F, Vacher S, Bièche I, et al. MT1-MMP targeting to endolysosomes is mediated by flotillin upregulation. Journal of Cell Science. 2018 Jan 1;131(17. doi: 10.1242/jcs.218925

42. Robert S, Gicquel T, Victoni T, Valença S, Barreto E, Bailly-Maître B, et al. Involvement of matrix metalloproteinases (MMPs) and inflammasome pathway in molecular mechanisms of fibrosis. Bioscience Reports. 2016 Jul 15;36(4): e00360. doi: 10.1042/BSR20160107

43. Roghi C, Jones L, Gratian M, English WR, Murphy G. Golgi reassembly stacking protein 55 interacts with membrane-type (MT) 1-matrix metalloprotease (MMP) and furin and plays a role in the activation of the MT1-MMP zymogen. FEBS Journal. 2010 Jul 1;277(15):3158–75. doi 10.1111/j.1742-4658.2010.07723.x

44. Rottner K, Faix J, Bogdan S, Linder S, Kerkhoff E. Actin assembly mechanisms at a glance. Journal of Cell Science. 2017 Oct 15;130(20):3427–35. doi: 10.1242/jcs.206433

45. Sammarco G, Varricchi G, Ferraro V, Ammendola M, De Fazio M, Altomare DF, et al. Mast Cells, Angiogenesis and Lymphangiogenesis in Human Gastric Cancer. International Journal of Molecular Sciences]. 2019 Apr 29;20(9):E2106. Doi: 10.3390/ijms20092106

46. Seiki M, Yana I. Roles of pericellular proteolysis by membrane type-1 matrix metalloproteinase in cancer invasion and angiogenesis. Cancer Science. 2003 Jul;94(7):569–74. doi: 10.1111/j.1349-7006.2003.tb01484.x

47. Sharma M, Tiwari A, Sharma S, Bhoria P, Gupta V, Gupta A, et al. Fibrotic Remodeling of the Extracellular Matrix through a Novel (Engineered, Dual-Function) Antibody Reactive to a Cryptic Epitope on the N-Terminal 30 kDa Fragment of Fibronectin. Nishimura SL, editor. PLoS ONE. 2013 Jul 23;8(7):e69343. Doi: 10.1371/journal.pone.0069343

48. Shi J, Zhang Y, Yao B, Sun P, Hao Y, Piao H, et al. Role of Exosomes in the Progression, Diagnosis, and Treatment of Gliomas. Medical Science Monitor. 2020 Oct 1;26. doi: 10.12659/MSM.924023

49. Tagliatela AC, Hempstead SC, Hibshman PS, Hockenberry MA, Brighton HE, Pecot CV, et al. Coronin 1C inhibits melanoma metastasis through regulation of MT1-MMP-containing extracellular vesicle secretion. Scientific Reports. 2020 Jul 20;10(1): 11958. doi: 10.1038/s41598-020-67465-w

50. Theocharis AD, Gialeli C, Bouris P, Giannopoulou E, Skandalis SS, Aletras AJ, et al. Cell-matrix interactions: focus on proteoglycan-proteinase interplay and pharmacological targeting in cancer. FEBS Journal. 2014 Nov;281(22):5023–42. Doi: 10.1111/febs.12927

51. Tian J, Pecaut MJ, Slater JM, Gridley DS. Spaceflight modulates expression of extracellular matrix, adhesion, and profibrotic molecules in mouse lung. Journal of Applied Physiology. 2010 Jan;108(1):162–71. Doi: 10.1152/japplphysiol.00730.2009

52. Tocchi A, Parks WC. Functional interactions between matrix metalloproteinases and glycosaminoglycans. FEBS Journal. 2013 Mar 8;280(10):2332–41. doi: 10.1111/febs.12198

53. Van Doren SR, Marcink TC, Koppisetti RK, Jurkevich A, Fulcher YG. Peripheral membrane associations of matrix metalloproteinases. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research. 2017 Nov;1864(11):1964–73. Doi: 10.1016/j.bbamcr.2017.04.013

54. Vandenbroucke RE, Vanlaere I, Van Hauwermeiren F, Van Wonterghem E, Wilson C, Libert C. Pro-inflammatory effects of matrix metalloproteinase 7 in acute inflammation. Mucosal Immunology. 2013 Oct 16;7(3):579–88. doi: 10.1038/mi.2013.76

55. Vermaelen KY, Cataldo D, Tournoy K, Maes T, Dhulst A, Louis R, et al. Matrix Metalloproteinase-9-Mediated Dendritic Cell Recruitment into the Airways Is a Critical Step in a Mouse Model of Asthma. The Journal of Immunology. 2003 Jul 15;171(2):1016–22. doi: 10.4049/jimmunol.171.2.1016

56. Wang T, Li L, Hong W. SNARE proteins in membrane trafficking. Traffic. 2017 Oct 10;18(12):767–75. doi: 10.1111/tra.12524

57. Watanabe R, Maeda T, Zhang H, Berry GJ, Zeisbrich M, Brockett R, et al. MMP (Matrix Metalloprotease)-9–Producing Monocytes Enable T Cells to Invade the Vessel Wall and Cause Vasculitis. Circulation Research. 2018 Aug 31;123(6):700–15. doi: 10.1161/circresaha.118.313206

58. Xu L, Cai Z, Yang F, Chen M. Activation-induced upregulation of MMP9 in mast cells is a positive feedback mediator for mast cell activation. Molecular Medicine Reports. 2017 Feb 17;15(4):1759–64. doi: 10.3892/mmr.2017.6215

59. Zhang W, Yang M, Yu L, Hu Y, Deng Y, Liu Y, et al. Long non-coding RNA lnc-DC in dendritic cells regulates trophoblast invasion via p-STAT3-mediated TIMP/MMP expression. American Journal of Reproductive Immunology. 2020 Apr 11;83(6):e13239. doi: 10.1111/aji.13239


Рецензия

Для цитирования:


Шишкина В.В., Антакова Л.Н., Золотарева С.Н., Атякшин Д.А. Матриксные металлопротеиназы в ремоделировании внеклеточного матрикса: молекулярные, клеточные и тканевые аспекты. Журнал анатомии и гистопатологии. 2022;11(3):93-108. https://doi.org/10.18499/2225-7357-2022-11-3-93-108

For citation:


Shishkina V.V., Antakova L.N., Zolotareva S.N., Atyakshin D.A. Matrix metalloproteinases in extracellular matrix remodeling: molecular, cellular and tissue aspects. Journal of Anatomy and Histopathology. 2022;11(3):93-108. (In Russ.) https://doi.org/10.18499/2225-7357-2022-11-3-93-108

Просмотров: 488


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2225-7357 (Print)